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Frontmatter

1.1 About This Documentation

This document contains a user guide and automatically generated API documentation for QuTiP. A PDF version
of this text is available at the documentation page.
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License. All contained code samples, and the source code of QuTiP, are licensed under the 3-
clause BSD licence. Full details of the copyright notices can be found on the Copyright and
Licensing page of this documentation.

1.2 Citing This Project

If you find this project useful, then please cite:

J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP 2: A Python framework for the dynamics of open quantum
systems”, Comp. Phys. Comm. 184, 1234 (2013).

or

J. R. Johansson, P.D. Nation, and F. Nori, “QuTiP: An open-source Python framework for the dynamics of open
quantum systems”’, Comp. Phys. Comm. 183, 1760 (2012).

which may also be downloaded from https://arxiv.org/abs/1211.6518 or https://arxiv.org/abs/1110.0573, respec-
tively.
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10 6UANTIOUE

UNIVERSITE DE SHERBROOKE

1.4 About QuTiP

Every quantum system encountered in the real world is an open quantum system. For although much care is
taken experimentally to eliminate the unwanted influence of external interactions, there remains, if ever so slight,
a coupling between the system of interest and the external world. In addition, any measurement performed on
the system necessarily involves coupling to the measuring device, therefore introducing an additional source of
external influence. Consequently, developing the necessary tools, both theoretical and numerical, to account for
the interactions between a system and its environment is an essential step in understanding the dynamics of practical
quantum systems.

In general, for all but the most basic of Hamiltonians, an analytical description of the system dynamics is not
possible, and one must resort to numerical simulations of the equations of motion. In absence of a quantum
computer, these simulations must be carried out using classical computing techniques, where the exponentially
increasing dimensionality of the underlying Hilbert space severely limits the size of system that can be efficiently
simulated. However, in many fields such as quantum optics, trapped ions, superconducting circuit devices, and
most recently nanomechanical systems, it is possible to design systems using a small number of effective oscillator
and spin components, excited by a limited number of quanta, that are amenable to classical simulation in a truncated
Hilbert space.

The Quantum Toolbox in Python, or QuTiP, is an open-source framework written in the Python programming lan-
guage, designed for simulating the open quantum dynamics of systems such as those listed above. This framework
distinguishes itself from other available software solutions in providing the following advantages:

* QuTiPrelies entirely on open-source software. You are free to modify and use it as you wish with no licensing
fees or limitations.

* QuTiP is based on the Python scripting language, providing easy to read, fast code generation without the
need to compile after modification.

* The numerics underlying QuTiP are time-tested algorithms that run at C-code speeds, thanks to the Numpy,
Scipy, and Cython libraries, and are based on many of the same algorithms used in propriety software.

¢ QuTiP allows for solving the dynamics of Hamiltonians with (almost) arbitrary time-dependence, including
collapse operators.

» Time-dependent problems can be automatically compiled into C++-code at run-time for increased perfor-
mance.

 Takes advantage of the multiple processing cores found in essentially all modern computers.

* QuTiP was designed from the start to require a minimal learning curve for those users who have experience
using the popular quantum optics toolbox by Sze M. Tan.

* Includes the ability to create high-quality plots, and animations, using the excellent Matplotlib package.

For detailed information about new features of each release of QuTiP, see the Change Log.
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1.5 QuTiP Plugins

Several libraries depend on QuTiP heavily making QuTiP a super-library

Matsubara
Matsubara is a plugin to study the ultrastrong coupling regime with structured baths

QNET
QNET is a computer algebra package for quantum mechanics and photonic quantum networks

1.6 Libraries Using QuTiP

Several libraries rely on QuTiP for quantum physics or quantum information processing. Some of them are:

Krotov
Krotov focuses on the python implementation of Krotov’s method for quantum optimal control

pyEPR
pyEPR interfaces classical distributed microwave analysis with that of quantum structures and
hamiltonians by providing easy to use analysis function and automation for the design of quantum
chips

scQubits
scQubits is a Python library which provides a convenient way to simulate superconducting qubits
by providing an interface to QuTiP

SimulaQron
SimulaQron is a distributed simulation of the end nodes in a quantum internet with the specific
goal to explore application development

QInfer
QInfer is a library for working with sequential Monte Carlo methods for parameter estimation in
quantum information

QPtomographer
QPtomographer derive quantum error bars for quantum processes in terms of the diamond norm
to a reference quantum channel

QuNetSim
QuNetSim is a quantum networking simulation framework to develop and test protocols for quan-
tum networks

qupulse
qupulse is a toolkit to facilitate experiments involving pulse driven state manipulation of physical
qubits

Pulser
Pulser is a framework for composing, simulating and executing pulse sequences for neutral-atom
quantum devices.
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1.7 Contributing to QuTiP

We welcome anyone who is interested in helping us make QuTiP the best package for simulating quantum systems.
There are detailed instructions on how to contribute code and documentation in the developers’ section of this
guide. You can also help out our users by answering questions in the QuTiP discussion mailing list, or by raising
issues in the main GitHub repository if you find any bugs. Anyone who contributes code will be duly recognized.
Even small contributions are noted. See Contributors for a list of people who have helped in one way or another.

1.7. Contributing to QuTiP
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Chapter 2

Installation

2.1 Quick Start

From QuTiP version 4.6 onwards, you should be able to get a working version of QuTiP with the standard

[pip install qutip ]

It is not recommended to install any packages directly into the system Python environment; consider using pip or
conda virtual environments to keep your operating system space clean, and to have more control over Python and
other package versions.

You do not need to worry about the details on the rest of this page unless this command did not work, but do also
read the next section for the list of optional dependencies. The rest of this page covers installation directly from
conda, installation from source, and additional considerations when working on Windows.

2.2 General Requirements

QuTiP depends on several open-source libraries for scientific computing in the Python programming language.
The following packages are currently required:

Package Version Details

Python 3.6+
NumPy 1.16+
SciPy 1.0+ Lower versions may have missing features.

In addition, there are several optional packages that provide additional functionality:

Package Version Details

matplotlib 1.2.1+ Needed for all visualisation tasks.

cython 0.29.20+ Needed for compiling some time-dependent Hamiltonians.

CVXpY 1.0+ Needed to calculate diamond norms.

C++ Compiler GCC 4.7+, MS Needed for compiling Cython files, made when using string-
VS 2015 format time-dependence.

pytest, 5.3+ For running the test suite.

pytest-rerunfailures

LaTeX TeXLive 2009+ Needed if using LaTeX in matplotlib figures, or for nice circuit

drawings in IPython.
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In addition, there are several additional packages that are not dependencies, but may give you a better programming
experience. IPython provides an improved text-based Python interpreter that is far more full-featured that the
default interpreter, and runs in a terminal. If you prefer a more graphical set-up, Jupyter provides a notebook-style
interface to mix code and mathematical notes together. Alternatively, Spyder is a free integrated development
environment for Python, with several nice features for debugging code. QuTiP will detect if it is being used within
one of these richer environments, and various outputs will have enhanced formatting.

2.3 Installing with conda

If you already have your conda environment set up, and have the conda-forge channel available, then you can
install QuTiP using:

[conda install qutip J

This will install the minimum set of dependences, but none of the optional packages.

2.3.1 Adding the conda-forge channel

To install QuTiP from conda, you will need to add the conda-forge channel. The following command adds this
channel with lowest priority, so conda will still try and install all other packages normally:

[conda config --append channels conda-forge J

If you want to change the order of your channels later, you can edit your . condarc (user home folder) file manually,
but it is recommended to keep defaults as the highest priority.

2.3.2 New conda environments

The default Anaconda environment has all the Python packages needed for running QuTiP installed already, so you
will only need to add the conda-forge channel and then install the package. If you have only installed Miniconda,
or you want a completely clean virtual environment to install QuTiP in, the conda package manager provides a
convenient way to do this.

To create a conda environment for QuTiP called qutip-env:

[conda create -n qutip-env python qutip ]

This will automatically install all the necessary packages, and none of the optional packages. You activate the new
environment by running

[conda activate qutip-env }

You can also install any more optional packages you want with conda install, for example matplotlib,
ipython or jupyter.
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2.4 Installation of the pre-release of version 5

QuTiP version 5 has been in development for some time and brings many new features, heavily reworks the core
functionalities of QuTiP. It is available as a pre-release on PyPl. Anyone wanting to try the new features can install
it with:

[pip install --pre qutip ]

We expect the pre-release to fully work. If you find any bugs, confusing documentation or missing features, please
tell create an issue on github.

This version breaks compatibility with QuTiP 4.7 in many small ways. Please see the Change Log for a list of
changes, new features and deprecations.

2.5 Installing from Source

Official releases of QuTiP are available from the download section on the project’s web pages, and the latest source
code is available in our GitHub repository. In general we recommend users to use the latest stable release of
QuTiP, but if you are interested in helping us out with development or wish to submit bug fixes, then use the latest
development version from the GitHub repository.

You can install from source by using the Python-recommended PEP 517 procedure, or if you want more control
or to have a development version, you can use the low-level build procedure with setuptools.

2.5.1 PEP 517 Source Builds

The easiest way to build QuTiP from source is to use a PEP-517-compatible builder such as the build package
available on pip. These will automatically install all build dependencies for you, and the pip installation step
afterwards will install the minimum runtime dependencies. You can do this by doing (for example)

pip install build
python -m build <path to qutip>
pip install <path to qutip>/dist/qutip-<version>.whl

The first command installs the reference PEP-517 build tool, the second effects the build and the third uses pip
to install the built package. You will need to replace <path to qutip> with the actual path to the QuTiP source
code. The string <version> will depend on the version of QuTiP, the version of Python and your operating system.
It will look something like 4.6.0-cp39-cp39-manylinuxl_x86_64, but there should only be one .whl file in
the dist/ directory, which will be the correct one.

2.5.2 Direct Setuptools Source Builds

This is the method to have the greatest amount of control over the installation, but it the most error-prone and not
recommended unless you know what you are doing. You first need to have all the runtime dependencies installed.
The most up-to-date requirements will be listed in pyproject.toml file, in the build-system.requires key.
As of the 4.6.0 release, the build requirements can be installed with

pip install setuptools wheel packaging 'cython>=0.29.20" 'numpy>=1.16.6,<1.20" 'scipy>
t—>:]..®'

or similar with conda if you prefer. You will also need to have a functional C++ compiler installed on your system.
This is likely already done for you if you are on Linux or macOS, but see the section on Windows installations if
that is your operating system.

To install QuTiP from the source code run:
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[python setup.py install J

To install OpenMP support, if available, run:

[python setup.py install --with-openmp ]

This will attempt to load up OpenMP libraries during the compilation process, which depends on you having
suitable C++ compiler and library support. If you are on Linux this is probably already done, but the compiler
macOS ships with does not have OpenMP support. You will likely need to refer to external operating-system-
specific guides for more detail here, as it may be very non-trivial to correctly configure.

If you wish to contribute to the QuTiP project, then you will want to create your own fork of the QuTiP git repository,
clone this to a local folder, and install it into your Python environment using:

[python setup.py develop ]

When you do import qutip in this environment, you will then load the code from your local fork, enabling you to
edit the Python files and have the changes immediately available when you restart your Python interpreter, without
needing to rebuild the package. Note that if you change any Cython files, you will need to rerun the build command.

You should not need to use sudo (or other superuser privileges) to install into a personal virtual environment; if it
feels like you need it, there is a good chance that you are installing into the system Python environment instead.

2.6 Installation on Windows

As with other operating systems, the easiest method is to use pip install qutip, or use the conda procedure
described above. If you want to build from source or use runtime compilation with Cython, you will need to have
a working C++ compiler.

You can download the Visual Studio IDE from Microsoft, which has a free Community edition containing a suffi-
cient C++ compiler. This is the recommended compiler toolchain on Windows. When installing, be sure to select
the following components:

* Windows “X” SDK (where “X” stands for your version: 7/8/8.1/10)
¢ Visual Studio C++ build tools

You can then follow the installation from source section as normal.

Important: In order to prevent issues with the PATH environment variable not containing the compiler and
associated libraries, it is recommended to use the developer command prompt in the Visual Studio installation
folder instead of the built-in command prompt.

The Community edition of Visual Studio takes around 10GB of disk space. If this is prohibitive for you, it is also
possible to install only the build tools and necessary SDKs instead, which should save about 2GB of space.

2.7 Verifying the Installation

QuTiP includes a collection of built-in test scripts to verify that an installation was successful. To run the suite of
tests scripts you must also have the pytest testing library. After installing QuTiP, leave the installation directory,
run Python (or IPython), and call:

import qutip.testing
qutip.testing.run()

12 Chapter 2. Installation


https://github.com/qutip/qutip
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/visual-cpp-build-tools/

QuTiP: Quantum Toolbox in Python, Release 5.0.1

This will take between 10 and 30 minutes, depending on your computer. At the end, the testing report should
report a success; it is normal for some tests to be skipped, and for some to be marked “xfail” in yellow. Skips may
be tests that do not run on your operating system, or tests of optional components that you have not installed the
dependencies for. If any failures or errors occur, please check that you have installed all of the required modules.
See the next section on how to check the installed versions of the QuTiP dependencies. If these tests still fail, then
head on over to the QuTiP Discussion Board or the GitHub issues page and post a message detailing your particular
issue.

2.8 Checking Version Information

QuTiP includes an “about” function for viewing information about QuTiP and the important dependencies installed
on your system. To view this information:

import qutip
qutip.about()

2.8. Checking Version Information 13
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Chapter 3

Users Guide

3.1 Guide Overview

The goal of this guide is to introduce you to the basic structures and functions that make up QuTiP. This guide
is divided up into several sections, each highlighting a specific set of functionalities. In combination with the
examples that can be found on the project web page https://qutip.org/tutorials.html, this guide should provide a
more or less complete overview of QuTip. We also provide the API documentation in API documentation.

3.1.1 Organization

QuTiP is designed to be a general framework for solving quantum mechanics problems such as systems composed
of few-level quantum systems and harmonic oscillators. To this end, QuTiP is built from a large (and ever growing)
library of functions and classes; from qutip.states.basis to qutip.wigner. The general organization of
QuTiP, highlighting the important API available to the user, is shown in the figure below.

15
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Fig. 1: Tree-diagram of the 468 user accessible functions and classes in QuTiP 4.6. A vector image of the code
tree is in qutip_tree.pdf.

3.2 Basic Operations on Quantum Objects

3.2.1 First things first

Warning: Do not run QuTiP from the installation directory.

To load the qutip modules, first call the import statement:

Efrom qutip import *

This will load all of the user available functions. Often, we also need to import the NumPy and Matplotlib libraries
with:

import numpy as np

import matplotlib.pyplot as plt
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In the rest of the documentation, functions are written using qutip.module.function() notation which links to the
corresponding function in the QuTiP API: Functions. However, in calling import *, we have already loaded all of
the QuTiP modules. Therefore, we will only need the function name and not the complete path when calling the
function from the interpreter prompt, Python script, or Jupyter notebook.

3.2.2 The quantum object class
Introduction

The key difference between classical and quantum mechanics is the use of operators instead of numbers as variables.
Moreover, we need to specify state vectors and their properties. Therefore, in computing the dynamics of quantum
systems, we need a data structure that encapsulates the properties of a quantum operator and ket/bra vectors. The
quantum object class, qutip.Qobj, accomplishes this using matrix representation.

To begin, let us create a blank Qobj:

[print(Qobj 0)

Output:

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =
[[0.1]

where we see the blank Qobj object with dimensions, shape, and data. Here the data corresponds to a 1x1-
dimensional matrix consisting of a single zero entry.

Hint: By convention, the names of Python classes, such as Qobj (), are capitalized whereas the names of functions
are not.

We can create a Qobj with a user defined data set by passing a list or array of data into the Qobj:

[print(Qobj([[l] ,[27,[31,[41, 05110

Output:

Quantum object: dims
Qobj data =

[[1.]

[2.]

[3.]

[4.]

[5.1]

[[5]5 [1]]) Shape = (5! 1); type = ket

x = np.array([[1, 2, 3, 4, 5]])
print (Qobj(x))

Output:

Quantum object: dims
Qobj data =
[[1. 2. 3. 4. 5.]]

[[1], [5]]1, shape = (1, 5), type = bra

r = np.random.rand(4, 4)
print(Qobj(r))
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Output:

Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =

[[0.37454012 0.95071431 0©.73199394 0.59865848]

[0.15601864 0.15599452 0.05808361 0.86617615]

[0.60111501 0.70807258 0.02058449 0.96990985]

[0.83244264 0.21233911 0.18182497 0.18340451]]

Notice how both the dims and shape change according to the input data. Although dims and shape appear to be the
same, dims keep track of the shapes for individual components of a multipartite system, while shape does not. We
refer the reader to the section tensor products and partial traces for more information.

Note: If you are running QuTiP from a python script you must use the print function to view the Qobj attributes.

States and operators

Manually specifying the data for each quantum object is inefficient. Even more so when most objects correspond to
commonly used types such as the ladder operators of a harmonic oscillator, the Pauli spin operators for a two-level
system, or state vectors such as Fock states. Therefore, QuTiP includes predefined objects for a variety of states
and operators:

States Command (# Inputs
means optional)

Fock state ket vector basis(N, N = number of levels in Hilbert space, m = level con-
#m)/fock (N, #m) taining excitation (0 if no m given)

Empty ket vector zero_ket (N) N = number of levels in Hilbert space,

Fock density matrix (outer fock_dm(N,#p) same as basis(N,m) / fock(N,m)

product of basis)

Coherent state coherent (N, alpha = complex number (eigenvalue) for requested co-
alpha) herent state

Coherent density matrix coherent_dm(N, same as coherent(N,alpha)

(outer product) alpha)

Thermal density matrix (for thermal_dm(N,n) n = particle number expectation value
n particles)

Maximally mixed density maximally mixed_d N = number of levels in Hilbert space
matrix

18 Chapter 3. Users Guide




QuTiP: Quantum Toolbox in Python, Release 5.0.1

Operators Command (# means Inputs

optional)
Charge operator charge (N, M=-N) Diagonal operator with entries from M..0..N.
Commutator commutator(A, B, Kind = ‘normal’ or ‘anti’.

kind)
Diagonals operator qdiags(N) Quantum object created from arrays of diagonals at given

offsets.
Displacement  operator displace(N,alpha) N=number of levels in Hilbert space, alpha = complex
(Single-mode) displacement amplitude.
Higher spin operators jmat(j,#s) j = integer or half-integer representing spin, s = X’, ‘y’,
‘2’, ‘+’, or

Identity geye(N) N = number of levels in Hilbert space.
Identity-like geye_like(qobj) qobj = Object to copy dimensions from.
Lowering (destruction) destroy(N) same as above
operator
Momentum operator momentum(N) same as above
Number operator num(N) same as above
Phase operator (Single- phase(N, phi®) Single-mode Pegg-Barnett phase operator with ref phase
mode) phiO.
Position operator position(N) same as above
Raising (creation) opera- create(N) same as above
tor
Squeezing operator squeeze(N, sp) N=number of levels in Hilbert space, sp = squeezing pa-
(Single-mode) rameter.
Squeezing operator (Gen- squeezing(ql, g2, ql,q2 = Quantum operators (Qobj) sp = squeezing pa-
eralized) sp) rameter.
Sigma-X sigmax()
Sigma-Y sigmay ()
Sigma-Z sigmaz()
Sigma plus sigmap()
Sigma minus sigmam()
Tunneling operator tunneling(N,m) Tunneling operator with elements of the form |N ><

N+m|+|N+m>< NJ|.

As an example, we give the output for a few of these functions:

>>> basis(5,3)
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[0.]
[1.]
[0.1]

>>> coherent(5,0.5-0.5j)
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[ 0.7788017 +0.j ]
[ 0.38939142-0.38939142j]
-0.27545895j5]
7898617-0.07898617j]

[ 0.
[-0.
[-0.04314271+0. j 1]

0
0
>>> destroy(4)

Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
(continues on next page)
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Qobj data
L[0.

[0.

[0.

[0.

S DD

>>> sigmaz()

Quantum object: dims

Qobj data =
[[ 1. 0.]
[ 0. -1.1]

(continued from previous page)

0. 0. ]
1.41421356 0. ]
0. 1.73205081]
0. 0. 11

[[2], [2]1], shape = (2, 2), type = oper, isherm = True

>>> jmat(5/2.0,'+")
Quantum object: dims = [[6], [6]], shape = (6, 6), type = oper, isherm = False

Qobj data
[[O.

[0.

[0.

[0.

[0.

[0.

2.23606798 0. 0. 0. 0. ]
0. 2.82842712 0. 0. 0. ]
0. 0. 3, 0. 0. ]
0. 0. 0. 2.82842712 0. ]
0. 0. 0. 0. 2.23606798]
0. 0. 0. 0. 0. 1]

Qobj attributes

We have seen that a quantum object has several internal attributes, such as data, dims, and shape. These can be
accessed in the following way:

>>> q = destroy(4)

>>> q.dims

[[41, [4]]

>>> (.shape

4, 9

In general, the attributes (properties) of a Qobj object (or any Python object) can be retrieved using the Q.attribute
notation. In addition to the those shown with the print function, an instance of the Qobj class also has the
following attributes:

Property  At- Description
tribute
Data Q. Matrix representing state or operator
data
Dimen- Q. List keeping track of shapes for individual components of a multipartite system (for
sions dims tensor products and partial traces).
Shape Q. Dimensions of underlying data matrix.
shape
is Hermi- Q. Is the operator Hermitian or not?
tian? isherm
Type Q. Is object of type ‘ket, ‘bra’, ‘oper’, or ‘super’?
type
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e )
Hermitian? ’

Fig. 2: The Qobj Class viewed as a container for the properties needed to characterize a quantum operator or state
vector.

For the destruction operator above:

>>> (.type
'oper'

>>> q.isherm
False

>>> (.data
Dia(shape=(4, 4), num_diag=1)

The data attribute returns a Qutip diagonal matrix. Qobj instances store their data in Qutip matrix format. In the
core qutip module, the Dense, CSR and Dia formats are available, but other packages can add other formats. For
example, the qutip-jax module adds the Jax and JaxDia formats. One can always access the underlying matrix
as a numpy array using Qobj. full. It is also possible to access the underlying data in a common format using
Qobj.data_as.

>>> (.data_as("dia_matrix")
<4x4 sparse matrix of type '<class 'numpy.complex128'>'
with 3 stored elements (1 diagonals) in DIAgonal format>

Conversion between storage type is done using the Qobj . to method.

>>> q.to("CSR").data
CSR(shape=(4, 4), nnz=3)

>>> .to("CSR").data_as("CSR_matrix")
<4x4 sparse matrix of type '<class 'numpy.complex128'>'
with 3 stored elements in Compressed Sparse Row format>

Note that Qobj.data_as does not do the conversion.

QuTiP will do conversion when needed to keep everything working in any format. However these conversions
could slow down computation and it is recommended to keep to one format family where possible. For example,
core QuTiP Dense and CSR work well together and binary operations between these formats is efficient. However
binary operations between Dense and Jax should be avoided since it is not always clear whether the operation will
be executed by Jax (possibly on a GPU if present) or numpy.
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Qobj Math

The rules for mathematical operations on Qobj instances are similar to standard matrix arithmetic:

-

L

>>> q = destroy(4)

>>> x = sigmax()
>>>q + 5
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[5. 1. 0. 0. ]
[®. 5. 1.41421356 0. ]
[0. 0. 5 1.73205081]
[0. 0. 0 5. 11
>>> X * X
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
[0. 1.]]
>>> q ** 3
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[0. 0. 0 2.44948974]
[0. 0. 0 0. ]
[0. 0. 0 0. ]
[®. 0. 0 0 1]

>>> x / np.sqrt(2)
Quantum object: dims

[[2], [2]], shape = (2, 2), type = oper, isherm = True

Qobj data =
[[®. 0.70710678]
[0.70710678 0. 11

Of course, like matrices, multiplying two objects of incompatible shape throws an error:

-

>>> print(q * Xx)

TypeError Traceback (most recent call last)
<ipython-input-33-0b599f41213e> in <module>
----> 1 print(q * x)

~/Documents/qutip_dev/qutip/qutip/qobj.py in __mul__(self, other)

553
554 else:
--> 555 raise TypeError("Incompatible Qobj shapes™)
556
557 elif isinstance(other, np.ndarray):

TypeError: Incompatible Qobj shapes

In addition, the logic operators “is equal” == and “is not equal” /= are also supported.
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3.2.3 Functions operating on Qobj class

Like attributes, the quantum object class has defined functions (methods) that operate on Qobj class instances. For
a general quantum object Q:

Function Command Description

Check Her- Q.check_herm() Check if quantum object is Hermitian

micity

Conjugate Q.conjQ Conjugate of quantum object.

Cosine Q.cosm() Cosine of quantum object.

Dagger (ad- Q.dagQ Returns adjoint (dagger) of object.

joint)

Diagonal Q.diag() Returns the diagonal elements.

Diamond Q.dnorm() Returns the diamond norm.

Norm

Eigenenergies Q.eigenenergies() Eigenenergies (values) of operator.

Eigenstates Q.eigenstates() Returns eigenvalues and eigenvectors.
Exponential Q.expm() Matrix exponential of operator.

Full Q.fullQ Returns full (not sparse) array of Q’s data.
Groundstate Q.groundstate() Eigenval & eigket of Qobj groundstate.

Matrix inverse  Q.inv() Matrix inverse of the Qobj.

Matrix  Ele- Q.matrix_element(bra, Matrix element <bra|Q|ket>

ment ket)

Norm Q.norm() Returns L2 norm for states, trace norm for operators.
Overlap Q.overlap(state) Overlap between current Qobj and a given state.

Partial Trace

Q.ptrace(sel)

Partial trace returning components selected using ‘sel” param-
eter.

Permute Q.permute(order) Permutes the tensor structure of a composite object in the
given order.
Projector Q.projQ Form projector operator from given ket or bra vector.
Sine Q.sinm(Q) Sine of quantum operator.
Sqrt Q.sqrtm(Q) Matrix sqrt of operator.
Tidyup Q.tidyup(Q Removes small elements from Qobj.
Trace Q.tr( Returns trace of quantum object.
Conversion Q.to(dtype) Convert the matrix format CSR / Dense.
Transform Q.transform(inpt) A basis transformation defined by matrix or list of kets ‘inpt’
Transpose Q.trans() Transpose of quantum object.
Truncate Neg Q.trunc_neg() Truncates negative eigenvalues
Unit Q.unit() Returns normalized (unit) vector Q/Q.norm().
>>> basis(5, 3)
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[0.]
[0.]
[0.]
[1.]
[0.]1]
>>> basis(5, 3).dagQ
Quantum object: dims = [[1], [5]], shape = (1, 5), type = bra

Qobj data =

[[0. 0. 0.

. 0.1]

>>> coherent_dm(5, 1)

(continues on next page)
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Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =

[[0.36791117 0.36774407 0.26105441 0.14620658 0.08826704]

[0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]

[0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]

[0.14620658 0.14614018 0.10374209 0.05810197 0.035077 ]

[0.08826704 0.08822695 0.06263061 0.035077 0.0211765 1]

>>> coherent_dm(5, 1).diag(Q)
array([0.36791117, 0.36757705, 0.18523331, 0.05810197, 0.0211765 1)

>>> coherent_dm(5, 1).full(Q

array([[0.36791117+0.j, 0.36774407+0.j, 0.26105441+0.j, 0.14620658+0.7,
0.08826704+0.7],
[0.36774407+0.j, 0.36757705+0.j, 0.26093584+0.j, 0.14614018+0.7,
0.08822695+0.7],
[0.26105441+0.j, 0.26093584+0.j, 0.18523331+0.j, 0.10374209+0.7,
0.06263061+0.7],
[0.14620658+0.j, 0.14614018+0.j, 0.10374209+0.j, 0.05810197+0.7,
0.035077 +0.j],
[0.08826704+0.j, 0.08822695+0.j, 0.06263061+0.j, 0.035077 +0.j,
0.0211765 +0.311)

>>> coherent_dm(5, 1).norm()
1.0000000175063126

>>> coherent_dm(5, 1).sqrtm()

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = False

Qobj data =

[[0.36791117+3.66778589e-09j 0.36774407-2.13388761e-09j
0.26105441-1.51480558e-09j 0.14620658-8.48384618e-10j
0.08826704-5.12182118e-10j]
[0.36774407-2.13388761e-09j 0.36757705+2.41479965e-09j
0.26093584-1.11446422e-09j 0.14614018+8.98971115e-10j
0.08822695+6.40705133e-107]
[0.26105441-1.51480558e-09] 0.26093584-1.11446422e-09j
0.18523331+4.02032413e-09j 0.10374209-3.39161017e-10j
0.06263061-3.71421368e-107j]
[0.14620658-8.48384618e-10j 0.14614018+8.98971115e-10j
0.10374209-3.39161017e-10j 0.05810197+3.36300708e-10j
0.035077 +2.36883273e-10j]
[0.08826704-5.12182118e-10j 0.08822695+6.40705133e-10j
0.06263061-3.71421368e-10j 0.035077 +2.36883273e-10j
0.0211765 +1.71630348e-10j]11]

>>> coherent_dm(5, 1).tr(Q)
1.0

>>> (basis(4, 2) + basis(4, 1)).unit(Q)
Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket
Qobj data =
[[O. ]
[0.70710678]
[0.70710678]
[0. 1]
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3.3 Manipulating States and Operators

3.3.1 Introduction

In the previous guide section Basic Operations on Quantum Objects, we saw how to create states and operators,
using the functions built into QuTiP. In this portion of the guide, we will look at performing basic operations
with states and operators. For more detailed demonstrations on how to use and manipulate these objects, see the
examples on the tutorials web page.

3.3.2 State Vectors (kets or bras)

Here we begin by creating a Fock basis vacuum state vector |0) with in a Hilbert space with 5 number states, from
0to 4:

vac = basis(5, 0)

print(vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[1.]

[0.]

[0.]

[0.]

[0.1]

and then create a lowering operator (@) corresponding to 5 number states using the destroy function:

a = destroy(5)

print(a)
Output:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = False
Qobj data =
[[o. 1 0. 0. 0. ]
[0. 0 1.41421356 0. 0. ]
[0. 0 0. 1.73205081 0. ]
[0. 0 0. 0. 2. ]
[0. 0 0. 0. 0. 1]

Now lets apply the destruction operator to our vacuum state vac,

[print (a * vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]

[0.]

[0.]

[0.]

[0.1]
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We see that, as expected, the vacuum is transformed to the zero vector. A more interesting example comes from
using the adjoint of the lowering operator, the raising operator a':

[print(a .dag() * vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]

[1.]

[0.]

[0.]

[0.1]

The raising operator has in indeed raised the state vec from the vacuum to the |1) state. Instead of using the dagger
Qobj.dag() method to raise the state, we could have also used the built in create function to make a raising
operator:

c = create(5)

print(c * vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]

[1.]

[0.]

[0.]

[0.1]

which does the same thing. We can raise the vacuum state more than once by successively apply the raising
operator:

[print(c * ¢ * vac)

Output:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
L[0. 1
[0. 1
[1.41421356]
[0. ]
[0. 1]

or just taking the square of the raising operator (&T) %

[print(c ®% 2 % yac)

Output:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
L[O. ]
[0. 1

(continues on next page)

26 Chapter 3. Users Guide



QuTiP: Quantum Toolbox in Python, Release 5.0.1

(continued from previous page)

[1.41421356]
(6. ]
[o. 1]

Applying the raising operator twice gives the expected v/n + 1 dependence. We can use the product of ¢ * a to
also apply the number operator to the state vector vac:

[print(c * a * vac) J

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]

[0.]

[0.]

[0.]

[0.1]

or on the |1) state:

[print(c *a * (c * vac)) ]

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]

[1.]

[0.]

[0.]

[0.1]

or the |2) state:

[print(c *a * (c**2 * vac)) J
Output:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[O. 1
(0. 1
[2.82842712]
[0. 1
[0. 1]

Notice how in this last example, application of the number operator does not give the expected value n = 2, but
rather 2v/2. This is because this last state is not normalized to unity as ¢ |n) = /n + 1 |n + 1). Therefore, we
should normalize our vector first:

[print(c *a * (c**2 * vac).unit(Q)) J

Output:

Qobj data =

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket

(continues on next page)
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[fo.]
[0.]
[2.]
[0.]
[0.1]

Since we are giving a demonstration of using states and operators, we have done a lot more work than we should
have. For example, we do not need to operate on the vacuum state to generate a higher number Fock state. Instead
we can use the basis (or fock) function to directly obtain the required state:

ket = basis(5, 2)

print (ket)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]

[0.]

[1.]

[0.]

[0.1]

Notice how it is automatically normalized. We can also use the built in num operator:

n = num(5)

print(n)

Output:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =

[[6. 0. 0. 0. 0.]

[6. 1. 0. 0. 0.]

[60. 0. 2. 0. 0.]

[0. 0. 0. 3. 0.]

[0. 0. 0. 0. 4.]]

1

Therefore, insteadof ¢ * a * (c ** 2 * vac).unit() we have:

[print(n * ket)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[0.]

[0.]

[2.]

[0.]

[0.1]

We can also create superpositions of states:
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ket = (basis(5, 0) + basis(5, 1)).unit(Q)

print (ket)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =

[[60.70710678]

[0.70710678]

(0. ]
(0. ]
(0. 1]

where we have used the Qobj.unit method to again normalize the state. Operating with the number function
again:

[print (n * ket)

Output:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
L[0. 1
[0.70710678]
[0. ]
[0. 1
[0. 1]

We can also create coherent states and squeezed states by applying the displace and squeeze functions to the
vacuum state:

vac = basis(5, 0)

d = displace(5, 1j)
s = squeeze(5, np.complex(0.25, 0.25))

print(d * vac)

Output:
Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[ 0.60655682+0. ] ]
[ ©. +0.606281337]
[-0.4303874 +0.j ]
[ 0. -0.24104351j5]
[ 0.14552147+0.] 11

[print(d * s * vac)

Output:

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[ 0.65893786+0.08139381j]

(continues on next page)
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[ 0.10779462+0.51579735j]
[-0.37567217-0.01326853j]
[-0.02688063-0.23828775j]
[ 0.26352814+0.11512178j]]

Of course, displacing the vacuum gives a coherent state, which can also be generated using the built in coherent
function.

3.3.3 Density matrices

One of the main purpose of QuTiP is to explore the dynamics of open quantum systems, where the most general
state of a system is no longer a state vector, but rather a density matrix. Since operations on density matrices
operate identically to those of vectors, we will just briefly highlight creating and using these structures.

The simplest density matrix is created by forming the outer-product |1) (1| of a ket vector:

ket = basis(5, 2)

print(ket * ket.dag(Q))

Output:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True

Qobj data =
[[O. 0.
[0.
[0.
[0.
[0.

ee=22
eere

ee=22
ee=222
—_—d e e e

]

A similar task can also be accomplished via the fock_dm or ket2dm functions:

[print(fock_dmcs, 2))

QOutput:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True

Qobj data =

[[0. 0.
[0.
[0.
[0.
[0.

(=B — I — R — ]
(=B — I — R — ]
(=B — I — R — ]
A T N T |

0
1.
0.
0 ]

[print (ket2dm(ket))

Output:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True

Qobj data =
[[O. 0.
[0.
[0.
[0.
[0.

ee=22
eere

ee2=22
ee=2e2
—_t e e e
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If we want to create a density matrix with equal classical probability of being found in the |2) or |4) number states
we can do the following:

[print(@.s * ket2dm(basis(5, 4)) + 0.5 * ket2dm(basis(5, 2)))

Output:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =

[[6. 6. 0. 0. 0. ]

[6. 0. 0. 0. 0. ]

[6. 0. 0.50. 0. ]

[6. 0. 6. 0. 0. ]

[6. 0. 0. 0. 0.5]]

oruse 0.5 * fock_dm(5, 2) + 0.5 * fock_dm(5, 4). There are also several other built-in functions for
creating predefined density matrices, for example coherent_dm and thermal_dm which create coherent state
and thermal state density matrices, respectively.

[print (coherent_dm(5, 1.25))

Output:

Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =

[[0.20980701 0.26141096 0.23509686 0.15572585 0.13390765]

[0.26141096 0.32570738 0.29292109 0.19402805 0.16684347]

[0.23509686 0©.29292109 0.26343512 0.17449684 0.1500487 ]

[0.15572585 0.19402805 0.17449684 0.11558499 0.09939079]

[0.13390765 0.16684347 0.1500487 0.09939079 0.0854655 1]

[print(thermal_dm(S , 1.25))

Output:
Quantum object: dims = [[5], [5]], shape = (5, 5), type = oper, isherm = True
Qobj data =
[[0.46927974 0. 0. 0. 0. ]
[0. 0.26071096 0. 0. 0. ]
[0. 0. 0.14483942 0. 0. ]
[0. 0. 0. 0.08046635 0. ]
[0. 0. 0. 0. 0.04470353]]

QuTiP also provides a set of distance metrics for determining how close two density matrix distributions are to each
other. Included are the trace distance tracedist, fidelity fidelity, Hilbert-Schmidt distance hilbert_dist,
Bures distance bures_dist, Bures angle bures_angle, and quantum Hellinger distance hellinger_dist.

x = coherent_dm(5, 1.25)

'

coherent_dm(5, np.complex(®, 1.25)) # <-- note the 'j'

y

thermal_dm(5, 0.125)

N
1]

np.testing.assert_almost_equal (fidelity(x, x), 1)

np.testing.assert_almost_equal(hellinger_dist(x, y), 1.3819080728932833)

We also know that for two pure states, the trace distance (T) and the fidelity (F) are related by T' = /1 — F'2, while
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the quantum Hellinger distance (QHE) between two pure states |1b) and |¢) is given by QHE = /2 — 2 |(¢|¢)|*.

[np.testing.assert_almost_equal(tracedist(y, X), np.sqrt(l - fidelity(y, x) ** 2)) J

For a pure state and a mixed state, 1 — F2 < T which can also be verified:

[assert 1 - fidelity(x, z) ** 2 < tracedist(x, z) ]

3.3.4 Qubit (two-level) systems

Having spent a fair amount of time on basis states that represent harmonic oscillator states, we now move on to
qubit, or two-level quantum systems (for example a spin-1/2). To create a state vector corresponding to a qubit
system, we use the same basis, or fock, function with only two levels:

[spin = basis(2, 0) ]

Now at this point one may ask how this state is different than that of a harmonic oscillator in the vacuum state
truncated to two energy levels?

[vac = basis(2, 0) J

At this stage, there is no difference. This should not be surprising as we called the exact same function twice. The
difference between the two comes from the action of the spin operators sigmax, sigmay, sigmaz, sigmap, and
sigmam on these two-level states. For example, if vac corresponds to the vacuum state of a harmonic oscillator,
then, as we have already seen, we can use the raising operator to get the |1) state:

[print (vac) ]

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[1.]

[0.1]

c = create(2)

print(c * vac)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[0.]

[1.1]

For a spin system, the operator analogous to the raising operator is the sigma-plus operator sigmap. Operating on
the spin state gives:

[print(spin) J

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[1.]

[0.]1]
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[print (sigmap() * spin)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[0.]

[0.1]

Now we see the difference! The sigmap operator acting on the spin state returns the zero vector. Why is this? To
see what happened, let us use the sigmaz operator:

[print(sigmaz (@))

Output:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[ 1. 0.]
[ 0. -1.]]

[print(sigmaz() * spin)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[1.]

[0.1]

spin2 = basis(2, 1)

print(spin2)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[0.]

[1.1]

[print(sigmaz O * spin2)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[0.]

[-1.1]

The answer is now apparent. Since the QuTiP sigmaz function uses the standard z-basis representation of the
sigma-z spin operator, the spin state corresponds to the |1) state of a two-level spin system while spin2 gives the
|4} state. Therefore, in our previous example sigmap() * spin, we raised the qubit state out of the truncated
two-level Hilbert space resulting in the zero state.

While at first glance this convention might seem somewhat odd, it is in fact quite handy. For one, the spin operators
remain in the conventional form. Second, when the spin system is in the |1) state:
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[print(sigmaz() * spin)

Output:

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =

[[1.]

[0.1]

the non-zero component is the zeroth-element of the underlying matrix (remember that python uses c-indexing,
and matrices start with the zeroth element). The ||) state therefore has a non-zero entry in the first index position.
This corresponds nicely with the quantum information definitions of qubit states, where the excited |1) state is label
as |0), and the ||) state by |1).

If one wants to create spin operators for higher spin systems, then the jmat function comes in handy.

3.3.5 Expectation values

Some of the most important information about quantum systems comes from calculating the expectation value of
operators, both Hermitian and non-Hermitian, as the state or density matrix of the system varies in time. Therefore,
in this section we demonstrate the use of the expect function. To begin:

vac = basis(5, 0)

one basis(5, 1)
c = create(5)

N

num(5)

np.testing.assert_almost_equal (expect(N, vac), 0)
np.testing.assert_almost_equal (expect(N, one), 1)

coh = coherent_dm(5, 1.0j)
np.testing.assert_almost_equal (expect(N, coh), 0.9970555745806597)
cat = (basis(5, 4) + 1.0j * basis(5, 3)).unit(Q

np.testing.assert_almost_equal (expect(c, cat), 0.99999999999999987)

The expect function also accepts lists or arrays of state vectors or density matrices for the second input:

states = [(c**k * vac).unit() for k in range(5)] # must normalize

print(expect(N, states))

Output:

[[@. 1. 2. 3. 4.7 ]

cat_list = [(basis(5, 4) + x * basis(5, 3)).unit() for x in [0, 1.0j, -1.0, -1.0j]]

print (expect(c, cat_list))

QOutput:
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[[®.+®.j 0.+1.5 -1.40.5 0.-1.j]

Notice how in this last example, all of the return values are complex numbers. This is because the expect function
looks to see whether the operator is Hermitian or not. If the operator is Hermitian, then the output will always be
real. In the case of non-Hermitian operators, the return values may be complex. Therefore, the expect function
will return an array of complex values for non-Hermitian operators when the input is a list/array of states or density
matrices.

Of course, the expect function works for spin states and operators:

up = basis(2, 0)
down = basis(2, 1)

np.testing.assert_almost_equal (expect(sigmaz(), up), 1)

np.testing.assert_almost_equal (expect(sigmaz(), down), -1)

as well as the composite objects discussed in the next section Using Tensor Products and Partial Traces:

spinl = basis(2, 0)
spin2 = basis(2, 1)
two_spins = tensor(spinl, spin2)

szl = tensor(sigmaz(), geye(2))

sz2 = tensor(geye(2), sigmaz())
np.testing.assert_almost_equal (expect(szl, two_spins), 1)

np.testing.assert_almost_equal (expect(sz2, two_spins), -1)

3.3.6 Superoperators and Vectorized Operators

In addition to state vectors and density operators, QuTiP allows for representing maps that act linearly on density
operators using the Kraus, Liouville supermatrix and Choi matrix formalisms. This support is based on the cor-
respondence between linear operators acting on a Hilbert space, and vectors in two copies of that Hilbert space,
vec : L(H) — H @ H [Hav03], [Wat13].

This isomorphism is implemented in QuTiP by the operator_to_vector and vector_to_operator functions:

psi = basis(2, 0)

rho = ket2dm(psi)

print (rho)

Output:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

[[1. ©.]

[0. 0.]]
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vec_rho = operator_to_vector(rho)

print(vec_rho)

Output:

Quantum object: dims = [[[2], [2]1], [1]], shape = (4, 1), type = operator-ket
Qobj data =

[[1.]

[0.]

[0.]

[0.1]

rho2 = vector_to_operator(vec_rho)

np.testing.assert_almost_equal ((rho - rho2).norm(), 0)

The Qobj.type attribute indicates whether a quantum object is a vector corresponding to an operator
(operator-ket), or its Hermitian conjugate (operator-bra).

Note that QuTiP uses the column-stacking convention for the isomorphism between £(H) and H ® H.:

A = Qobj(np.arange(4) .reshape((2, 2)))

print(A)

Output:

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =

[[6. 1.]

[2. 3.]]

[print (operator_to_vector(A))

Output:

Quantum object: dims = [[[2], [2]1], [1]1], shape = (4, 1), type = operator-ket
Qobj data =

[[0.]

[2.]

[1.]

[3.1]

Since H®H is a vector space, linear maps on this space can be represented as matrices, often called superoperators.
Using the Qobj, the spre and spost functions, supermatrices corresponding to left- and right-multiplication
respectively can be quickly constructed.

X

sigmax()

wn
Il

spre(X) * spost(X.dag()) # Represents conjugation by X.

Note that this is done automatically by the to_super function when given type="oper"' input.

S2 = to_super(X)

np.testing.assert_almost_equal((S - S2).norm(), 0)
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Quantum objects representing superoperators are denoted by type="super':

[print(S) ]
Output:

Quantum object: dims = [[[2], [2]]1, [[2], [2]]], shape = (4, 4), type = super, isherm.
—= True

Qobj data =

[[6. 0. 0. 1.]

[0. 0. 1. 0.]

[0. 1. 0. 0.]

[1. 0. 0. 0.]]

Information about superoperators, such as whether they represent completely positive maps, is exposed through
the Qobj.iscp, Qobj.istp and Qobj.iscptp attributes:

[print(S.iscp, S.istp, S.iscptp) J
Output:
[True True True J

In addition, dynamical generators on this extended space, often called Liouvillian superoperators, can be created
using the Iiouvillian function. Each of these takes a Hamiltonian along with a list of collapse operators, and
returns a type=""super" object that can be exponentiated to find the superoperator for that evolution.

H =10 * sigmaz()
cl = destroy(2)
L = liouvillian(H, [c1])

print (L)

S = (12 * L) .expm()

Output:
Quantum object: dims = [[[2], [2]1], [[2], [2]]1], shape = (4, 4), type = super, isherm.
= False
Qobj data =
[[O. +0.7 0. +0.j 0. +0.j 1. +0.j]
[ 0. +0.j -0.5+20.7 0. +0.j 0. +0.j]
[ 6. +0.j 0. +0.j -0.5-20.j 0. +0.j]
[ 0. +0.7 0. +0.7 0. +0.j -1. +0.j1]

For qubits, a particularly useful way to visualize superoperators is to plot them in the Pauli basis, such that
Sy = ((o,]S[o.])). Because the Pauli basis is Hermitian, S,, ,, is a real number for all Hermitian-preserving
superoperators S, allowing us to plot the elements of .S as a Hinton diagram. In such diagrams, positive elements
are indicated by white squares, and negative elements by black squares. The size of each element is indicated by

+1 p=0,z

-1 p=y,z
can quickly see this by noting that the Y and Z elements of the Hinton diagram for S are negative:

the size of the corresponding square. For instance, let S[p] = o,pol. Then S[o,] = o, - We

from qutip import *
settings.colorblind_safe = True

(continues on next page)
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import matplotlib.pyplot as plt
plt.rcParams['savefig.transparent'] = True

X = sigmax()
S = spre(X) * spost(X.dag())
hinton(S)
| X Y Z
| -
1.0
0.5
X -
Y -
7 -

3.3.7 Choi, Kraus, Stinespring and y Representations

In addition to the superoperator representation of quantum maps, QuTiP supports several other useful representa-
tions. First, the Choi matrix J(A) of a quantum map A is useful for working with ancilla-assisted process tomog-
raphy (AAPT), and for reasoning about properties of a map or channel. Up to normalization, the Choi matrix is
defined by acting A on half of an entangled pair. In the column-stacking convention,

J(A) = (@ M) el

In QuTiP, J(A) can be found by calling the to_choi function on a type="super" Qobj.

X = sigmax()

S = sprepost(X, X)
J = to_choi(S)
print(J)
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Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super, isherm.
—= True, superrep = choi

Qobj data =
[[6. 0. 0.
[0. 1.
[0. 1.
[0. O

(=2
[ — I — ]
_

]

[print (to_choi (spre(geye(2))))

Output:

Quantum object: dims = [[[2], [2]1], [[2], [2]]1], shape = (4, 4), type = super, isherm.
—= True, superrep = choi

Qobj data =
[[1. 0. O.
[0. O.
[0. O.
[1. ©

S @
L — I — I
Ll i

]

If a Qobj instance is already in the Choi Qobj . superrep, then calling to_choi does nothing:

[print (to_choi(J))

Output:

Quantum object: dims = [[[2], [2]]1, [[2], [2]]], shape = (4, 4), type = super, isherm.
—= True, superrep = choi

Qobj data =
[[6. 0. 0.
[0. 1.
[0. 1.
[0. O

(= — I — ]
[ T T

(=2

]

To get back to the superoperator representation, simply use the to_super function. As with to_choi, to_super
is idempotent:

[print(to_super(J) -5

Qutput:

Quantum object: dims = [[[2], [2]]1, [[2], [2]]], shape = (4, 4), type = super, isherm.
—= True
Qobj data =
[[6. 0. 0.
[0. O.
[0. ©.
[0. ®

(=2 — ]
(= — I — =]
[T T T

]

[print (to_super(S))

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super, isherm,
—= True

(continues on next page)
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Qobj data =
[[6. 0.
[0.
[0.
[1.

(=]
[ =2 — =R
[ T B '

S~
S D=

]

We can quickly obtain another useful representation from the Choi matrix by taking its eigendecomposition. In
particular, let { A;} be a set of operators such that J(A) = 3. |A;)) (Ai]. We can write J(A) in this way for any
hermicity-preserving map; that is, for any map A such that J(A) = JT(A). These operators then form the Kraus
representation of A. In particular, for any input p,

Ap) = ZAiij.

Notice using the column-stacking identity that (CT ® A)|B)) = |ABC)), we have that

D@ A @ AT ) (| = Z |Ai) (Ai] = J(A).

7

The Kraus representation of a hermicity-preserving map can be found in QuTiP using the to_kraus function.

[del sum # np.sum overwrote sum and caused a bug.

[I, X, Y, Z = qeye(2), sigmax(), sigmay(), sigmaz()

S = sum([sprepost(P, P) for P in (I, X, Y, Z2)]) / 4
print(S)

Output:

Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super, isherm.
—= True

Qobj data =

[[6.5 0. 0. 0.5]
[6. 0. 0. 0. ]
[06. 0. 0. 0. ]
[6.5 0. 0. 0.5]]

J = to_choi(S)
print(J)

Output:

Quantum object: dims = [[[2], [2]1], [[2], [2]]1], shape = (4, 4), type = super, isherm.
—= True, superrep = choi

Qobj data
[[60.5 0.
[6. 0.5
[6. O.
[6. O.

.5

S22 l
(=2 — I — ]

]
]
]
511

[print(J .eigenstates(O[1])

Output:
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[Quantum object: dims
Qobj data =

[[1.]

[0.]

[0.]

[0.1]

Quantum object: dims
Qobj data =

[[0.]

[1.]

[0.]

[0.1]

Quantum object: dims
Qobj data =

[[0.]

[0.]

[1.]

[0.1]

Quantum object: dims
Qobj data =

[[0.]

[0.]

[0.]

[1.11]

CCC2], [2]1], [1, 11], shape = (4, 1), type = operator-ket

CCC2], [2]1]1, [1, 11], shape = (4, 1), type = operator-ket

[C[2], [2]1], [1, 111, shape = (4, 1), type = operator-ket

[CC2], [2]1], [1, 11], shape = (4, 1), type = operator-ket

K = to_kraus(S)

print (K)
Output:
[Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.70710678 0. ]
[®. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type =.
—oper, isherm = False
Qobj data =
[[O. 0. ]
[0.70710678 0. 1], Quantum object: dims = [[2], [2]], shape = (2, 2), type =.
—oper, isherm = False
Qobj data =
[[O. 0.70710678]
[®. 0. 1], Quantum object: dims = [[2], [2]], shape = (2, 2), type =.
—oper, isherm = True
Qobj data =
[[O. 0. ]
[0. 0.70710678]111

As with the other representation conversion functions, to_kraus checks the Qobj . superrep attribute of its input,
and chooses an appropriate conversion method. Thus, in the above example, we can also call to_kraus on J.

KJ = to_kraus(J)
print (KJ)

Output:

[Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

(continues on next page)
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[[0.70710678 0. ]
[®. 0. 1], Quantum object: dims = [[2], [2]], shape = (2, 2), type =.
—oper, isherm = False
Qobj data =
[[0. 0. ]
[0.70710678 O. 1], Quantum object: dims = [[2], [2]], shape = (2, 2), type =.
-.oper, isherm = False
Qobj data =
[[O. 0.70710678]
[®. 0. 11, Quantum object: dims = [[2], [2]], shape = (2, 2), type =.
—oper, isherm = True
Qobj data =
[[O. 0. ]
[0. 0.70710678]111]

for A, AJ in zip(K, KJ1):
print(A - AJ)

Output:

Quantum object: dims
Qobj data =

[[6. 0.]

[0. 0.]1]
Quantum object: dims
Qobj data =

[[6. 0.]

[6. 0.]1]
Quantum object: dims
Qobj data =

[[6. 0.]

[6. 0.]1]
Quantum object: dims
Qobj data =

[[6. 0.]

[0. 0.]1]

[[2], [2]1], shape (2, 2), type = oper, isherm = True

[[2], [2]], shape (2, 2), type = oper, isherm = True

[[2], [2]], shape

(2, 2), type = oper, isherm = True

[L2], [2]1]1, shape

(2, 2), type = oper, isherm = True

The Stinespring representation is closely related to the Kraus representation, and consists of a pair of operators A
and B such that for all operators X acting on H,

A(X) = Try(AXBT),

where the partial trace is over a new index that corresponds to the index in the Kraus summation. Conversion to
Stinespring is handled by the to_stinespring function.

a = create(2).dag()

S_ad = sprepost(a * a.dag(), a * a.dag()) + sprepost(a, a.dag())
S =0.9 * sprepost(I, I) + 0.1 * S_ad

print(S)

Output:

Quantum object: dims = [[[2], [2]]1, [[2], [2]]], shape = (4, 4), type = super, isherm.
—= False

(continues on next page)

42 Chapter 3. Users Guide




QuTiP: Quantum Toolbox in Python, Release 5.0.1

(continued from previous page)

Qobj data =

[[1. ©®. 0. 0.1]
[6. 0.90. 0. ]
[6. 0. 0.9 0. ]
[6. 0. 0. 0.9]]

A, B = to_stinespring(S)

print(A)
Output:
Quantum object: dims = [[2, 3], [2]], shape = (6, 2), type = oper, isherm = False
Qobj data =
[[-0.98845443 0. ]
[ 0. 0.31622777]
[ ©.15151842 0. ]
[ 0. -0.93506452]
[ 0. 0. 1
[ 0. -0.16016975]1]
[print(B)
Output:
Quantum object: dims = [[2, 3], [2]], shape = (6, 2), type = oper, isherm = False
Qobj data =
[[-0.98845443 0. ]
[ 0. 0.31622777]
[ .15151842 O0. ]
[ 0. -0.93506452]
[ ®. 0. ]
[ 0. -0.16016975]1]

Notice that a new index has been added, such that A and B have dimensions [[2, 3], [2]], with the length-3
index representing the fact that the Choi matrix is rank-3 (alternatively, that the map has three Kraus operators).

to_kraus(S)
print(to_choi(S) .eigenenergies())

Output:

[[0. 0.04861218 0.1 1.85138782]

Finally, the last superoperator representation supported by QuTiP is the y-matrix representation,

A(p) = Z Xa,ﬁBaPB};a
o,

where {B, } is a basis for the space of matrices acting on H. In QuTiP, this basis is taken to be the Pauli basis
B, =04/ /2. Conversion to the x formalism is handled by the to_chi function.

chi = to_chi(S)
print(chi)

Output:
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Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super, isherm.
—= True, superrep = chi
Qobj data =

[[3.7+0.j 0. +0.j 0. +0.j 0.1+0.j ]
[0. +0.] ©0.1+0.F 0. +0.1j 0. +0.j ]
[0. +0.7 0. -0.1j 0.1+0.7 0. +0.j ]
[0.1+0.] 0. +0.7 0. +0.j 0.1+0.j 1]

One convenient property of the x matrix is that the average gate fidelity with the identity map can be read off
directly from the oo element:

np.testing.assert_almost_equal (average_gate_fidelity(S), 0.9499999999999998)

print(chi[0, 0] / 4)

Output:

[(@.925+®j) }

Here, the factor of 4 comes from the dimension of the underlying Hilbert space . As with the superoperator
and Choi representations, the y representation is denoted by the Qobj . superrep, such that to_super, to_choi,
to_kraus, to_stinespring and to_chi all convert from the y representation appropriately.

3.3.8 Properties of Quantum Maps

In addition to converting between the different representations of quantum maps, QuTiP also provides attributes to
make it easy to check if a map is completely positive, trace preserving and/or hermicity preserving. Each of these
attributes uses Qobj . superrep to automatically perform any needed conversions.

In particular, a quantum map is said to be positive (but not necessarily completely positive) if it maps all positive
operators to positive operators. For instance, the transpose map A(p) = pT is a positive map. We run into problems,
however, if we tensor A with the identity to get a partial transpose map.

rho = ket2dm(bell_state())
rho_out = partial_transpose(rho, [0, 1])
print(rho_out.eigenenergies())

Output:

[[—@.5 0.5 0.5 0.5] ]

Notice that even though we started with a positive map, we got an operator out with negative eigenvalues. Complete
positivity addresses this by requiring that a map returns positive operators for all positive operators, and does so even
under tensoring with another map. The Choi matrix is very useful here, as it can be shown that a map is completely
positive if and only if its Choi matrix is positive [Wat13]. QuTiP implements this check with the Qobj.iscp
attribute. As an example, notice that the snippet above already calculates the Choi matrix of the transpose map by
acting it on half of an entangled pair. We simply need to manually set the dims and superrep attributes to reflect
the structure of the underlying Hilbert space and the chosen representation.

J = rho_out

J.dims = [[[2], [21]1, [[2], [2]]]
J.superrep = 'choi'

print(J.iscp)

Output:

(ralse )
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This confirms that the transpose map is not completely positive. On the other hand, the transpose map does satisfy
a weaker condition, namely that it is hermicity preserving. That is, A(p) = (A(p))T for all p such that p = p'. To
see this, we note that (pT)T = p*, the complex conjugate of p. By assumption, p = p' = (p*)7, though, such that
A(p) = A(p") = p*. We can confirm this by checking the Qobj .1ishp attribute:

[print(] .ishp) J

Output:

(toue )

Next, we note that the transpose map does preserve the trace of its inputs, such that Tr(A[p]) = Tr(p) for all p.
This can be confirmed by the Qobj .istp attribute:

[print(J .istp) J
Output:
[Fal se ]

Finally, a map is called a quantum channel if it always maps valid states to valid states. Formally, a map is a channel
if it is both completely positive and trace preserving. Thus, QuTiP provides a single attribute to quickly check that
this is true.

>>> print(J.iscptp)
False

>>> print(to_super(geye(2)).iscptp)
True

3.4 Using Tensor Products and Partial Traces

3.4.1 Tensor products

To describe the states of multipartite quantum systems - such as two coupled qubits, a qubit coupled to an oscillator,
etc. - we need to expand the Hilbert space by taking the tensor product of the state vectors for each of the system
components. Similarly, the operators acting on the state vectors in the combined Hilbert space (describing the
coupled system) are formed by taking the tensor product of the individual operators.

In QuTiP the function tensor is used to accomplish this task. This function takes as argument a collection:

[>>> tensor(opl, op2, op3) ]
oralist:
[>>> tensor([opl, op2, op3]) ]

of state vectors or operators and returns a composite quantum object for the combined Hilbert space. The function
accepts an arbitrary number of states or operators as argument. The type returned quantum object is the same as
that of the input(s).

For example, the state vector describing two qubits in their ground states is formed by taking the tensor product of
the two single-qubit ground state vectors:

[print(tensor(basis(z, 0), basis(2, 0))) J

Output:
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Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =

[[1.]

[0.]

[0.]

[0.1]

or equivalently using the 1ist format:

[print(tensor([basis(z, 0), basis(2, 0)]1)) ]

Output:

Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =

[[1.]

[0.]

[0.]

[0.1]

This is straightforward to generalize to more qubits by adding more component state vectors in the argument list
to the tensor function, as illustrated in the following example:

print(tensor((basis(2, 0) + basis(2, 1)).unit(), (basis(2, 0) + basis(2, 1)).unit(Q),.
~basis(2, 0)))

QOutput:

Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = (8, 1), type = ket
Qobj data =

[[0.5]

[0. 1

[0.5]

0. 1]

[0.5]

[0. 1]

[0.5]

[0. 1]

This state is slightly more complicated, describing two qubits in a superposition between the up and down states,
while the third qubit is in its ground state.

To construct operators that act on an extended Hilbert space of a combined system, we similarly pass a list of
operators for each component system to the tensor function. For example, to form the operator that represents
the simultaneous action of the o, operator on two qubits:

[print(tensor(sigmax(), sigmax())) ]
Output:

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =

[[6. 0. 0. 1.]

[0. 0. 1. 0.]

[0. 1. 0. 0.]

[1. 0. 0. 0.]]

To create operators in a combined Hilbert space that only act on a single component, we take the tensor product of
the operator acting on the subspace of interest, with the identity operators corresponding to the components that
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are to be unchanged. For example, the operator that represents o, on the first qubit in a two-qubit system, while
leaving the second qubit unaffected:

[print(tensor(sigmaz() , identity(2)))

Output:

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =

[[ 1. 6. 0. 0.]

[ 6. 1. 0. 0.]

[ 0. 0. -1. 0.]

[6. 0. 0. -1.]1

3.4.2 Example: Constructing composite Hamiltonians

The tensor function is extensively used when constructing Hamiltonians for composite systems. Here we’ll look
at some simple examples.

Two coupled qubits

First, let’s consider a system of two coupled qubits. Assume that both the qubits have equal energy splitting, and
that the qubits are coupled through a o, ® o, interaction with strength g = 0.05 (in units where the bare qubit
energy splitting is unity). The Hamiltonian describing this system is:

H = tensor(sigmaz(), identity(2)) + tensor(identity(2), sigmaz()) + 0.05 *.
—tensor(sigmax(), sigmax())

print (H)

Output:

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =

[[ 2. 0 0. 0.05]

[ 0. 0. 0.05 0. ]

[ ©. 0.05 0. 0. 1]

[ 0.05 © 0. -2. 11

Three coupled qubits

The two-qubit example is easily generalized to three coupled qubits:

H = (tensor(sigmaz(), identity(2), identity(2)) + tensor(identity(2), sigmaz(),.
—identity(2)) + tensor(identity(2), identity(2), sigmaz()) + 0.5 * tensor(sigmax(),.
—sigmax(), identity(2)) + 0.25 * tensor(identity(2), sigmax(), sigmax()))

print (H)

Output:

Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper, isherm =.
—True

Qobj data =

[[ 3. 0. 0. 0.25 0. 0. 0.5 0. ]

(continues on next page)
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A two-level system coupled to a cavity: The Jaynes-Cummings model

The simplest possible quantum mechanical description for light-matter interaction is encapsulated in the Jaynes-
Cummings model, which describes the coupling between a two-level atom and a single-mode electromagnetic field
(a cavity mode). Denoting the energy splitting of the atom and cavity omega_a and omega_c, respectively, and
the atom-cavity interaction strength g, the Jaynes-Cummings Hamiltonian can be constructed as:

N=26
omega_a = 1.0

omega_c = 1.25

g=0.75
a = tensor(identity(2), destroy(N))
sm = tensor(destroy(2), identity(N))

sz = tensor(sigmaz(), identity(N))

H=20.5* omega_a * sz + omega_c * a.dag() “ a + g * (a.dag() * sm + a * sm.dag())

hinton(H, fig=plt.figure(figsize=(12, 12)))
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Here N is the number of Fock states included in the cavity mode.

3.4.3 Partial trace

The partial trace is an operation that reduces the dimension of a Hilbert space by eliminating some degrees of
freedom by averaging (tracing). In this sense it is therefore the converse of the tensor product. It is useful when
one is interested in only a part of a coupled quantum system. For open quantum systems, this typically involves
tracing over the environment leaving only the system of interest. In QuTiP the class method ptrace is used to take
partial traces. ptrace acts on the Qobj instance for which it is called, and it takes one argument sel, which is a
list of integers that mark the component systems that should be kept. All other components are traced out.

For example, the density matrix describing a single qubit obtained from a coupled two-qubit system is obtained
via:

>>> psi = tensor(basis(2, 0), basis(2, 1))

>>> psi.ptrace(0)
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True

(continues on next page)
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Qobj data =
[[1. 0.]
[6. 0.]]

>>> psi.ptrace(l)
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[6. 0.]
[0. 1.]]

Note that the partial trace always results in a density matrix (mixed state), regardless of whether the composite
system is a pure state (described by a state vector) or a mixed state (described by a density matrix):

>>> psi = tensor((basis(2, 0) + basis(2, 1)).unit(), basis(2, 0))

>>> psi
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.70710678]
[0. ]
[0.70710678]
[0. 1]

>>> psi.ptrace(0)
Quantum object: dims
Qobj data =

[[0.5 0.5]

[0.5 0.5]]

[[2], [2]], shape = (2, 2), type = oper, isherm = True

>>> rho = tensor(ket2dm((basis(2, 0) + basis(2, 1)).unit()), fock_dm(2, 0))

>>> rho
Quantum object: dims
Qobj data
[[0.5 0.
[60. O.
[0.5 0.
[6. 0.

[[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True

.5

(9]
(=2 — I — ]

S22 l

]
]
]
1]

>>> rho.ptrace(0)
Quantum object: dims
Qobj data =

[[0.5 0.5]

[0.5 0.5]]

[[2], [2]], shape = (2, 2), type = oper, isherm = True

3.4.4 Superoperators and Tensor Manipulations

As described in Superoperators and Vectorized Operators, superoperators are operators that act on Liouville space,
the vectorspace of linear operators. Superoperators can be represented using the isomorphism vec : L(H) —
H®H [Hav03], [Watl3]. To represent superoperators acting on £(#1 ®Hz) thus takes some tensor rearrangement
to get the desired ordering H1 @ Ho @ Hi ® Ha.

In particular, this means that tensor does not act as one might expect on the results of to_super:
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>>> A = geye([2])

>>> B = geye([3])

>>> to_super(tensor(A, B)).dims
(ccz, 31, [2, 311, [[2, 31, [2, 3111

>>> tensor(to_super(A), to_super(B)).dims
CCC21, [21, (31, [311, [C2]1, [21, [3]1, [311]

In the former case, the result correctly has four copies of the compound index with dims [2, 3]. In the latter case,
however, each of the Hilbert space indices is listed independently and in the wrong order.

The super_tensor function performs the needed rearrangement, providing the most direct analog to tensor
on the underlying Hilbert space. In particular, for any two type="oper" Qobjs A and B, to_super(tensor(A,
B)) == super_tensor(to_super(A), to_super(B)) and operator_to_vector(tensor(A, B)) ==
super_tensor(operator_to_vector(A), operator_to_vector(B)). Returning to the previous example:

>>> super_tensor (to_super(A), to_super(B)).dims

tcez, 31, [z, 311, [fz, 31, [z, 3]1]1]

The composite function automatically switches between tensor and super_tensor based on the type of its
arguments, such that composite(A, B) returns an appropriate Qobj to represent the composition of two systems.

>>> composite(A, B).dims
[fz2, 31, [2, 311

>>> composite(to_super(A), to_super(B)).dims

tctz, 31, [2, 311, [fz, 31, [2, 3]1]]

QuTiP also allows more general tensor manipulations that are useful for converting between superoperator repre-
sentations [WBC11]. In particular, the tensor_contract function allows for contracting one or more pairs of
indices. This can be used to find superoperators that represent partial trace maps. Using this functionality, we can
construct some quite exotic maps, such as a map from 3 x 3 operators to 2 X 2 operators:

>>> tensor_contract(composite(to_super(A), to_super(B)), (1, 3), (4, 6)).dims
[CC21, [21]1, [[(3]1, [311]

3.5 Superoperators, Pauli Basis and Channel Contraction

written by Christopher Granade <http://www.cgranade.com>, Institute for Quantum Computing

In this guide, we will demonstrate the tensor_contract function, which contracts one or more pairs of indices
of a Qobj. This functionality can be used to find rectangular superoperators that implement the partial trace chan-
nel :math:S(rho) = Tr_2(rho)", for instance. Using this functionality, we can quickly turn a system-environment
representation of an open quantum process into a superoperator representation.
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3.5.1 Superoperator Representations and Plotting

We start off by first demonstrating plotting of superoperators, as this will be useful to us in visualizing the results
of a contracted channel.

In particular, we will use Hinton diagrams as implemented by hinton, which show the real parts of matrix elements
as squares whose size and color both correspond to the magnitude of each element. To illustrate, we first plot a few
density operators.

from qutip import hinton, identity, Qobj, to_super, sigmaz, tensor, tensor_contract
from qutip.core.gates import cnot, hadamard_transform

hinton(identity([2, 3]).unit())
hinton(Qobj([[1, 0.5], [0.5, 1]11).unit(Q))

(0, 0] (0,1] (0, 2| (1,0] (1,1] (1, 2|

10, 0) - 0.20
0.15
|0, 1) -
0.10
|0’2)_ 0.05
0.00
|1, 0) - ~0.05
-0.10
1,1} 0.15
11,2)- -0.20
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(0] (1]

N . .
B . .

We show superoperators as matrices in the Pauli basis, such that any Hermicity-preserving map is represented by

a real-valued matrix. This is especially convienent for use with Hinton diagrams, as the plot thus carries complete
information about the channel.

As an example, conjugation by o, leaves ¥ and o, invariant, but flips the sign of o, and o,. This is indicated in
Hinton diagrams by a negative-valued square for the sign change and a positive-valued square for a +1 sign.

[hinton(to_super(sigmaz())) ]
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As a couple more examples, we also consider the supermatrix for a Hadamard transform and for o, ® H.

hinton(to_super (hadamard_transform()))
hinton(to_super(tensor(sigmaz(), hadamard_transform())))
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3.5.2 Reduced Channels

As an example of tensor contraction, we now consider the map
S(p) = Tra(CNOT(p®|0)(0])CNOT)

We can think of the cNOT here as a system-environment representation of an open quantum process, in which an
environment register is prepared in a state panc, then a unitary acts jointly on the system of interest and environ-
ment. Finally, the environment is traced out, leaving a channel on the system alone. In terms of Wood diagrams
<http://arxiv.org/abs/1111.6950>, this can be represented as the composition of a preparation map, evolution un-
der the system-environment unitary, and then a measurement map.

The two tensor wires on the left indicate where we must take a tensor contraction to obtain the measurement map.
Numbering the tensor wires from 0 to 3, this corresponds to a tensor_contract argument of (1, 3).

[tensor_contract(to_super(identity([2, 21)), (1, 3)) ]

Meanwhile, the super_tensor function implements the swap on the right, such that we can quickly find the
preparation map.

g = tensor(identity(2), basis(2))
s_prep = sprepost(q, q.dag())

For a cNOT system-environment model, the composition of these maps should give us a completely dephasing
channel. The channel on both qubits is just the superunitary cNOT channel:

[hinton(to_super(cnot())) ]
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We now complete by multiplying the superunitary CNOT by the preparation channel above, then applying the partial
trace channel by contracting the second and fourth index indices. As expected, this gives us a dephasing map.

[hinton(tensor_contract(to_super(cnot()), (1, 3)) * s_prep)
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1.0

0.5

3.6 Time Evolution and Quantum System Dynamics

3.6.1 Introduction

Although in some cases, we want to find the stationary states of a quantum system, often we are interested in the
dynamics: how the state of a system or an ensemble of systems evolves with time. QuTiP provides many ways to
model dynamics.

There are two kinds of quantum systems: open systems that interact with a larger environment and closed systems
that do not. In a closed system, the state can be described by a state vector. When we are modeling an open system,
or an ensemble of systems, the use of the density matrix is mandatory.

The following table lists of the solvers QuTiP provides for dynamic quantum systems and indicates the type of
object returned by the solver:
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Table 1: QuTiP Solvers

Equation Function Class Returns

Unitary evolution, Schrodinger equation. sesolve SESolver Result

Periodic Schrédinger equation. fsesolve None Result
Schrédinger equation using Krylov method  krylovsolve None Result

Lindblad master eqn. or Von Neuman eqn. mesolve MESolver Result

Monte Carlo evolution mcsolve MCSolver McResult
Non-Markovian Monte Carlo nm_mcsolve NonMarkovianMCSo NmmcResult
Bloch-Redfield master equation brmesolve BRSolver Result
Floquet-Markov master equation fmmesolve FMESolver FloquetResult
Stochastic Schrodinger equation ssesolve SSESolver MultiTrajResult
Stochastic master equation smesolve SMESolver MultiTrajResult
Transfer Tensor Method time-evolution ttmsolve None Result
Hierarchical Equations of Motion evolu- heomsolve HEOMSolver HEOMResult

tion

3.6.2 Dynamics Simulation Results

The solver.Result Class

Before embarking on simulating the dynamics of quantum systems, we will first look at the data structure used for
returning the simulation results. This object is a Result class that stores all the crucial data needed for analyzing
and plotting the results of a simulation. A generic Result object result contains the following properties for
storing simulation data:

Property Description

result.solver String indicating which solver was used to generate the data.
result.times List/array of times at which simulation data is calculated.

result.expect List/array of expectation values, if requested.

result.e_data Dictionary of expectation values, if requested.

result.states List/array of state vectors/density matrices calculated at times, if requested.
result.final_state State vector or density matrix at the last time of the evolution.
result.stats Various statistics about the evolution.

Accessing Result Data

To understand how to access the data in a Result object we will use an example as a guide, although we do not
worry about the simulation details at this stage. Like all solvers, the Master Equation solver used in this example
returns an Result object, here called simply result. To see what is contained inside result we can use the print
function:

>>> print(result)
<Result
Solver: mesolve
Solver stats:
method: 'scipy zvode adams'
init time: 0.0001876354217529297
preparation time: 0.007544517517089844
run time: 0.001268625259399414
solver: 'Master Equation Evolution'
num_collapse: 1
Time interval: [0, 1.0] (2 steps)
(continues on next page)
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(continued from previous page)

Number of e_ops: 1
State not saved.

The first line tells us that this data object was generated from the Master Equation solver mesolve. Next we have
the statistics including the ODE solver used, setup time, number of collpases. Then the integration interval is
described, followed with the number of expectation value computed. Finally, it says whether the states are stored.

Now we have all the information needed to analyze the simulation results. To access the data for the two expectation
values one can do:

expt® = result.expect[0]
exptl = result.expect[1]

Recall that Python uses C-style indexing that begins with zero (i.e., [0] => 1st collapse operator data). Alternatively,
expectation values can be obtained as a dictionary:

e_ops = {"sx": sigmax(), "sy": sigmay(), "sz": sigmaz()}

expt_sx = result.e_data["sx"]

When e_ops is a list, e_data ca be used with the list index. Together with the array of times at which these
expectation values are calculated:

[times = result.times

we can plot the resulting expectation values:

plot(times, expt®)
plot(times, exptl)
show()

State vectors, or density matrices, are accessed in a similar manner, although typically one does not need an in-
dex (i.e [0]) since there is only one list for each of these components. Some other solver can have other output,
heomsolve’s results can have ado_states output if the options store_ados is set, similarly, fmmesolve can
return floquet_states.

Multiple Trajectories Solver Results

Solver which compute multiple trajectories such as the Monte Carlo Equations Solvers or the Stochastics Solvers
result will differ depending on whether the trajectories are flags to be saved. For example:

>>> mcsolve(H, psi, np.linspace(®, 1, 11), c_ops, e_ops=[num(N)], ntraj=25, options={
—"keep_runs_results": False})

>>> np.shape(result.expect)

(1, 11D

>>> mcsolve(H, psi, np.linspace(®, 1, 11), c_ops, e_ops=[num(N)], ntraj=25, options={
—"keep_runs_results": True})

>>> np.shape(result.expect)

(1, 25, 11

When the runs are not saved, the expectation values and states are averaged over all trajectories, while a list over
the runs are given when they are stored. For a fix output format, average_expect return the average, while
runs_states return the list over trajectories. The runs_ output will return None when the trajectories are not
saved. Standard derivation of the expectation values is also available:
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Reduced result Trajectories  re- Description
sults

average_states runs_states State vectors or density matrices calculated at each times of
tlist

average_final_state runs_final_state State vectors or density matrices calculated at the last time of
tlist

average_expect runs_expect List/array of expectation values, if requested.

std_expect List/array of standard derivation of the expectation values.

average_e_data runs_e_data Dictionary of expectation values, if requested.

std_e_data Dictionary of standard derivation of the expectation values.

Multiple trajectories results also keep the trajectories seeds to allows recomputing the results.

[seeds = result.seeds ]

One last feature specific to multi-trajectories results is the addition operation that can be used to merge sets of
trajectories.

>>> runl = smesolve(H, psi, np.linspace(®, 1, 11), c_ops, e_ops=[num(N)], ntraj=25)
>>> print(runl.num_trajectories)

25

>>> run2 = smesolve(H, psi, np.linspace(®, 1, 11), c_ops, e_ops=[num(N)], ntraj=25)
>>> print(run2.num_trajectories)

25

>>> merged = runl + run2

>>> print(merged.num_trajectories)

50

This allows one to improve statistics while keeping previous computations.

3.6.3 Lindblad Master Equation Solver

Unitary evolution

The dynamics of a closed (pure) quantum system is governed by the Schrodinger equation

9 X
2w = Fv 3.1
ot : G-

where W is the wave function, Z the Hamiltonian, and / is Planck’s constant. In general, the Schrodinger equation
is a partial differential equation (PDE) where both ¥ and H are functions of space and time. For computational
purposes it is useful to expand the PDE in a set of basis functions that span the Hilbert space of the Hamiltonian,
and to write the equation in matrix and vector form

. d
Zﬁ% [v) = H |¢)

where [1)) is the state vector and H is the matrix representation of the Hamiltonian. This matrix equation can,
in principle, be solved by diagonalizing the Hamiltonian matrix H. In practice, however, it is difficult to perform
this diagonalization unless the size of the Hilbert space (dimension of the matrix [) is small. Analytically, it is
a formidable task to calculate the dynamics for systems with more than two states. If, in addition, we consider
dissipation due to the inevitable interaction with a surrounding environment, the computational complexity grows
even larger, and we have to resort to numerical calculations in all realistic situations. This illustrates the importance
of numerical calculations in describing the dynamics of open quantum systems, and the need for efficient and
accessible tools for this task.
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The Schrodinger equation, which governs the time-evolution of closed quantum systems, is defined by its Hamilto-
nian and state vector. In the previous section, Using Tensor Products and Partial Traces, we showed how Hamiltoni-
ans and state vectors are constructed in QuTiP. Given a Hamiltonian, we can calculate the unitary (non-dissipative)
time-evolution of an arbitrary state vector |1o) (psi®) using the QuTiP solver SESoIlver or the function sesolve.
It evolves the state vector and evaluates the expectation values for a set of operators e_ops at the points in time in
the list times, using an ordinary differential equation solver.

For example, the time evolution of a quantum spin-1/2 system with tunneling rate 0.1 that initially is in the up state
is calculated, and the expectation values of the o, operator evaluated, with the following code

>>> H = 2*np.pi * 0.1 * sigmax()

>>> psi® = basis(2, 0)

>>> times = np.linspace(0.0, 10.0, 20)

>>> solver = SESolver (H)

>>> result = solver.run(psi®, times, e_ops=[sigmaz()])

>>> result.expect

[array([ 1. , 0.78914057, 0.24548543, -0.40169579, -0.87947417,
-0.98636112, -0.67728018, -0.08257665, 0.54695111, 0.94581862,
0.94581574, 0.54694361, -0.08258559, -0.67728679, -0.9863626 ,
-0.87946979, -0.40168705, 0.24549517, 0.78914703, 1. DI

See the next section for examples on evolution with dissipation using mesolve.

The function returns an instance of Result, as described in the previous section Dynamics Simulation Results.
The attribute expect in result is a list of expectation values for the operator(s) that are passed to the e_ops
parameter. Passing multiple operators to e_ops as a list or dict results in a vector of expectation value for each
operators. result.e_data present the expectation values as a dict of list of expect outputs, while result. expect
coerce the values to numpy arrays.

>>> solver.run(psi®, times, e_ops={"s_z": sigmaz(), "s_y": sigmay()}).e_data
{'s_z': [1.0, 0.7891405656865187, 0.24548542861367784, -0.40169578982499127,
., 0.24549516882108563, 0.7891470300925004, 0.9999999999361128],
s_y': [0.0, -0.6142126403681064, -0.9694002807604085, -0.9157731664756708,
., 0.9693978141534602, 0.6142043348073879, -1.1303742482923297e-05]}

The resulting expectation values can easily be visualized using matplotlib’s plotting functions:

>>> H = 2*np.pi * 0.1 * sigmax()

>>> psi® = basis(2, 0)

>>> times = np.linspace(0.0, 10.0, 100)

>>> result = sesolve(H, psi®, times, [sigmaz(), sigmay()])
>>> fig, ax = plt.subplots()

>>> ax.plot(result.times, result.expect[0])
>>> ax.plot(result.times, result.expect[1])
>>> ax.set_xlabel('Time")

>>> ax.set_ylabel ('Expectation values')

>>> ax.legend(("Sigma-Z", "Sigma-Y"))

>>> plt.show()
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If an empty list of operators is passed to the e_ops parameter, the sesolve and mesolve functions return a Result
instance that contains a list of state vectors for the times specified in times

>>> times = [0.0, 1.0]

>>> result = sesolve(H, psi®, times, [])

>>> result.states

[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket

Qobj data =
[[1.]
[0.]], Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.80901699+0. j ]
[0. -0.58778526j]111]

Non-unitary evolution

While the evolution of the state vector in a closed quantum system is deterministic, open quantum systems are
stochastic in nature. The effect of an environment on the system of interest is to induce stochastic transitions
between energy levels, and to introduce uncertainty in the phase difference between states of the system. The
state of an open quantum system is therefore described in terms of ensemble averaged states using the density
matrix formalism. A density matrix p describes a probability distribution of quantum states |t/,,), in a matrix
representation p = Y p, |¢y,) (1|, where p,, is the classical probability that the system is in the quantum state
|1, ). The time evolution of a density matrix p is the topic of the remaining portions of this section.
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The Lindblad Master equation

The standard approach for deriving the equations of motion for a system interacting with its environment is to
expand the scope of the system to include the environment. The combined quantum system is then closed, and its
evolution is governed by the von Neumann equation

i

Prot(t) = h[Htot,Ptot(t)], (3.2)
the equivalent of the Schrodinger equation (3.1) in the density matrix formalism. Here, the total Hamiltonian
Hiot = Hsys + Heny + Hint;

includes the original system Hamiltonian Hy, the Hamiltonian for the environment H.,,,, and a term representing
the interaction between the system and its environment Hj,. Since we are only interested in the dynamics of the
system, we can at this point perform a partial trace over the environmental degrees of freedom in Eq. (3.2), and
thereby obtain a master equation for the motion of the original system density matrix. The most general trace-
preserving and completely positive form of this evolution is the Lindblad master equation for the reduced density
matrix p = Treny [ptot]

5(t) = (D), ()] + 3 5 [2Cap(t)CL — pl)CLC — CLCp(t)] (33

where the C,, = /¥, A, are collapse operators, and A,, are the operators through which the environment couples
to the system in Hj,, and +,, are the corresponding rates. The derivation of Eq. (3.3) may be found in several
sources, and will not be reproduced here. Instead, we emphasize the approximations that are required to arrive at
the master equation in the form of Eq. (3.3) from physical arguments, and hence perform a calculation in QuTiP:

* Separability: At¢ = 0 there are no correlations between the system and its environment such that the total
density matrix can be written as a tensor product pf , (0) = p?(0) @ pL.. (0).

* Born approximation: Requires: (1) that the state of the environment does not significantly change as a
result of the interaction with the system; (2) The system and the environment remain separable throughout
the evolution. These assumptions are justified if the interaction is weak, and if the environment is much
larger than the system. In summary, piot(t) = p(t) ® peny-

* Markov approximation The time-scale of decay for the environment 7y, is much shorter than the smallest
time-scale of the system dynamics 7gys >> Teny. This approximation is often deemed a “short-memory
environment” as it requires that environmental correlation functions decay on a time-scale fast compared to
those of the system.

* Secular approximation Stipulates that elements in the master equation corresponding to transition frequen-
cies satisfy |wqp — wea| < 1/ Tsys» 1.€., all fast rotating terms in the interaction picture can be neglected. It
also ignores terms that lead to a small renormalization of the system energy levels. This approximation is
not strictly necessary for all master-equation formalisms (e.g., the Block-Redfield master equation), but it is
required for arriving at the Lindblad form (3.3) which is used in mesolve.

For systems with environments satisfying the conditions outlined above, the Lindblad master equation (3.3) governs
the time-evolution of the system density matrix, giving an ensemble average of the system dynamics. In order
to ensure that these approximations are not violated, it is important that the decay rates ~,, be smaller than the
minimum energy splitting in the system Hamiltonian. Situations that demand special attention therefore include,
for example, systems strongly coupled to their environment, and systems with degenerate or nearly degenerate
energy levels.

For non-unitary evolution of a quantum systems, i.e., evolution that includes incoherent processes such as relaxation
and dephasing, it is common to use master equations. In QuTiP, the function mesolve isused for both: the evolution
according to the Schrodinger equation and to the master equation, even though these two equations of motion are
very different. The mesolve function automatically determines if it is sufficient to use the Schrodinger equation (if
no collapse operators were given) or if it has to use the master equation (if collapse operators were given). Note that
to calculate the time evolution according to the Schrodinger equation is easier and much faster (for large systems)
than using the master equation, so if possible the solver will fall back on using the Schrodinger equation.

What is new in the master equation compared to the Schrodinger equation are processes that describe dissipation
in the quantum system due to its interaction with an environment. These environmental interactions are defined
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by the operators through which the system couples to the environment, and rates that describe the strength of the
processes.

In QuTiP, the product of the square root of the rate and the operator that describe the dissipation process is called
a collapse operator. A list of collapse operators (c_ops) is passed as the fourth argument to the mesolve function
in order to define the dissipation processes in the master equation. When the c_ops isn’t empty, the mesolve
function will use the master equation instead of the unitary Schrodinger equation.

Using the example with the spin dynamics from the previous section, we can easily add a relaxation process (de-
scribing the dissipation of energy from the spin to its environment), by adding np.sqrt(0.05) * sigmax() in
the fourth parameter to the mesolve function.

>>> times = np.linspace(0.0, 10.0, 100)

>>> result = mesolve(H, psi®, times, [np.sqrt(0.05) * sigmax()], e_ops=[sigmaz(),.
—sigmay (1)

>>> fig, ax = plt.subplots()

>>> ax.plot(times, result.expect[0])

>>> ax.plot(times, result.expect[1])

>>> ax.set_xlabel('Time")

>>> ax.set_ylabel ('Expectation values')

>>> ax.legend(("Sigma-Z", "Sigma-Y"))

>>> plt.show()
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Here, 0.05 is the rate and the operator o, (sigmax) describes the dissipation process.

Now a slightly more complex example: Consider a two-level atom coupled to a leaky single-mode cavity through
a dipole-type interaction, which supports a coherent exchange of quanta between the two systems. If the atom
initially is in its groundstate and the cavity in a 5-photon Fock state, the dynamics is calculated with the lines
following code
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>>> times = np.linspace(0.0, 10.0, 200)

>>> psi® = tensor(fock(2,0), fock(10, 5))

>>> a = tensor(geye(2), destroy(10))

>>> sm = tensor(destroy(2), geye(10))

>>>H =2 * np.pi * a.dag() * a + 2 * np.pi * sm.dag() * sm + 2 * np.pi * 0.25 * (sm.
~* a.dag() + sm.dag() * a)

>>> result = mesolve(H, psi®, times, [np.sqrt(0.1)*a], e_ops=[a.dag()*a, sm.dag()*sm])
>>> plt.figure(Q)

>>> plt.plot(times, result.expect[0])

>>> plt.plot(times, result.expect[1])

>>> plt.xlabel('Time")

>>> plt.ylabel ('Expectation values')

>>> plt.legend(("cavity photon number", "atom excitation probability"))

>>> plt.show()
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3.6.4 Monte Carlo Solver
Introduction

Where as the density matrix formalism describes the ensemble average over many identical realizations of a quan-
tum system, the Monte Carlo (MC), or quantum-jump approach to wave function evolution, allows for simulating
an individual realization of the system dynamics. Here, the environment is continuously monitored, resulting in a
series of quantum jumps in the system wave function, conditioned on the increase in information gained about the
state of the system via the environmental measurements. In general, this evolution is governed by the Schrédinger
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equation with a non-Hermitian effective Hamiltonian
ih "
Heg = Hyys — Z CiC,, (3.4)
2

where again, the C,, are collapse operators, each corresponding to a separate irreversible process with rate ,,.
Here, the strictly negative non-Hermitian portion of Eq. (3.4) gives rise to a reduction in the norm of the wave
function, that to first-order in a small time 8¢, is given by (¢)(t + 6t)[¢ (¢t + 6t)) = 1 — op where

Sp =06ty _(Y(t)|C Cultp(t)), (3.5)

and J¢ is such that 0p < 1. With a probability of remaining in the state |¢)(¢ + dt)) given by 1 — Jp, the cor-
responding quantum jump probability is thus Eq. (3.5). If the environmental measurements register a quantum
jump, say via the emission of a photon into the environment, or a change in the spin of a quantum dot, the wave
function undergoes a jump into a state defined by projecting |1(t)) using the collapse operator C,, corresponding
to the measurement

[t + 58)) = Con [0(8)) / ()| C5F Crlib())2. (3.6)

If more than a single collapse operator is present in Eq. (3.4), the probability of collapse due to the ¢th-operator
C; is given by

Pi(t) = (¥ (1)|C; Cil(t)) /op. 3.7)

Evaluating the MC evolution to first-order in time is quite tedious. Instead, QuTiP uses the following algorithm to
simulate a single realization of a quantum system. Starting from a pure state |¢(0)):

e Ia: Choose a random number r; between zero and one, representing the probability that a quantum jump
occurs.

e Ib: Choose a random number 75 between zero and one, used to select which collapse operator was respon-
sible for the jump.

* II: Integrate the Schrodinger equation, using the effective Hamiltonian (3.4) until a time 7 such that the norm
of the wave function satisfies ()(7) (7)) = r1, at which point a jump occurs.

e III: The resultant jump projects the system at time 7 into one of the renormalized states given by Eq. (3.6).
The corresponding collapse operator C), is chosen such that n is the smallest integer satisfying:
> Pu(r) > (3.8)
i=1
where the individual P, are given by Eq. (3.7). Note that the left hand side of Eq. (3.8) is, by definition, normalized
to unity.

e IV: Using the renormalized state from step III as the new initial condition at time 7, draw a new random
number, and repeat the above procedure until the final simulation time is reached.

Monte Carlo in QuTiP

In QuTiP, Monte Carlo evolution is implemented with the mcsolve function. It takes nearly the same arguments as
the mesolve function for master-equation evolution, except that the initial state must be a ket vector, as oppose to a
density matrix, and there is an optional keyword parameter ntraj that defines the number of stochastic trajectories
to be simulated. By default, ntraj=500 indicating that 500 Monte Carlo trajectories will be performed.

To illustrate the use of the Monte Carlo evolution of quantum systems in QuTiP, let’s again consider the case of a
two-level atom coupled to a leaky cavity. The only differences to the master-equation treatment is that in this case
we invoke the mcsolve function instead of mesolve
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times = np.linspace(0.0, 10.0, 200)

psi® = tensor(fock(2, 0), fock(10, 8))

a = tensor(geye(2), destroy(10))

sm = tensor(destroy(2), geye(10))

H = 2*np.pi*a.dag()*a + 2*np.pi*sm.dag()*sm + 2*np.pi*0.25*(sm*a.dag() + sm.dag()*a)
data = mcsolve(H, psi®, times, [np.sqrt(0.1) * a], e_ops=[a.dag() * a, sm.dag() * sm])

plt.figure(Q

plt.plot(times, data.expect[0], times, data.expect[1])
plt.title('Monte Carlo time evolution')

plt.xlabel('Time")

plt.ylabel ('Expectation values')

plt.legend(("cavity photon number", "atom excitation probability™))
plt.show()

Monte Carlo time evolution
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The advantage of the Monte Carlo method over the master equation approach is that only the state vector is required
to be kept in the computers memory, as opposed to the entire density matrix. For large quantum system this
becomes a significant advantage, and the Monte Carlo solver is therefore generally recommended for such systems.
For example, simulating a Heisenberg spin-chain consisting of 10 spins with random parameters and initial states
takes almost 7 times longer using the master equation rather than Monte Carlo approach with the default number of
trajectories running on a quad-CPU machine. Furthermore, it takes about 7 times the memory as well. However,
for small systems, the added overhead of averaging a large number of stochastic trajectories to obtain the open
system dynamics, as well as starting the multiprocessing functionality, outweighs the benefit of the minor (in this
case) memory saving. Master equation methods are therefore generally more efficient when Hilbert space sizes are
on the order of a couple of hundred states or smaller.
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Monte Carlo Solver Result

The Monte Carlo solver returns a McResult object consisting of expectation values and/or states. The main differ-
ence with mesolve’s Result is that it optionally stores the result of each trajectory together with their averages.
When trajectories are stored, result.runs_expect is a list over the expectation operators, trajectories and times
in that order. The averages are stored in result.average_expect and the standard derivation of the expecta-
tion values in result.std_expect. When the states are returned, result.runs_states will be an array of
length ntraj. Each element contains an array of “Qobj” type ket with the same number of elements as times.
result.average_states is alist of density matrices computed as the average of the states at each time step. Fur-
thermore, the output will also contain a list of times at which the collapse occurred, and which collapse operators
did the collapse. These can be obtained in result.col_times and result.col_which respectively.

Changing the Number of Trajectories

By default, the mcsolve function runs 500 trajectories. This value was chosen because it gives good accuracy,
Monte Carlo errors scale as 1/n where n is the number of trajectories, and simultaneously does not take an excessive
amount of time to run. However, you can change the number of trajectories to fit your needs. In order to run 1000
trajectories in the above example, we can simply modify the call to mcsolve like:

[data = mcsolve(H, psi®, times, c_ops e_ops=e_ops, ntraj=1000) ]

where we have added the keyword argument ntraj=1000 at the end of the inputs. Now, the Monte Carlo solver will
calculate expectation values for both operators, a.dag() * a, sm.dag() * smaveraging over 1000 trajectories.

Other than a target number of trajectories, it is possible to use a computation time or errors bars as condition to
stop computing trajectories.

timeout is quite simple as mcsolve will stop starting the computation of new trajectories when it is reached.
Thus:

data = mcsolve(H, psi®, times, [np.sqrt(0.1) * a], e_ops=e_ops, ntraj=1000,..
—timeout=60)

Will compute 60 seconds of trajectories or 1000, which ever is reached first. The solver will finish any trajectory
started when the timeout is reached. Therefore if the computation time of a single trajectory is quite long, the
overall computation time can be much longer that the provided timeout.

Lastly, mcsolve can be instructed to stop when the statistical error of the expectation values get under a certain
value. When computing the average over trajectories, the error on these are computed using jackknife resampling
for each expect and each time and the computation will be stopped when all these values are under the tolerance
passed to target_tol. Therefore:

data = mcsolve(H, psi®, times, [np.sqrt(0.1) * a], e_ops=e_ops,
ntraj=1000, target_tol=0.01, timeout=600)

will stop either after all errors bars on expectation values are under ®.01, 1000 trajectories are computed or 10
minutes have passed, whichever comes first. When a single values is passed, it is used as the absolute value of the
tolerance. When a pair of values is passed, it is understood as an absolute and relative tolerance pair. For even
finer control, one such pair can be passed for each e_ops. For example:

data = mcsolve(H, psi®, times, c_ops, e_ops=e_ops, target_tol=[
(le-5, 0.1),
@, 0,

D

will stop when the error bars on the expectation values of the first e_ops are under 10% of their average values.

If after computation of some trajectories, it is determined that more are needed, it is possible to add trajectories to
existing result by adding result together:
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>>> runl = mcsolve(H, psi, times, c_ops, e_ops=e_ops, ntraj=25)
>>> print(runl.num_trajectories)

25

>>> run2 = mcsolve(H, psi, times, c_ops, e_ops=e_ops, ntraj=25)
>>> print(run2.num_trajectories)

25

>>> merged = runl + run2

>>> print(merged.num_trajectories)

50

Note that this merging operation only checks that the result are compatible —i.e. that the e_ops and t1list are the
same. It does not check that the same initial state or Hamiltonian where used.

This can be used to explore the convergence of the Monte Carlo solver. For example, the following code block
plots expectation values for 1, 10 and 100 trajectories:

solver = MCSolver(H, c_ops=[np.sqrt(0.1) * a])
c_ops=[np.sqrt(0.1) * a]
e_ops = [a.dag) * a, sm.dag() * sm]

datal = mcsolve(H, psi®, times, c_ops, e_ops=e_ops, ntraj=1)
datal® = datal + mcsolve(H, psi®, times, c_ops, e_ops=e_ops, ntraj=9)
datal®® = datal® + mcsolve(H, psi®, times, c_ops, e_ops=e_ops, ntraj=90)

exptl = datal.expect
exptl® = datal®.expect
expt100 = datal®0.expect

plt.figure(Q)

plt.plot(times, exptl[0], label="ntraj=1")
plt.plot(times, exptlO®[0], label="ntraj=10")
plt.plot(times, exptl0OO0[0], label="ntraj=100")
plt.title('Monte Carlo time evolution')
plt.xlabel('Time")

plt.ylabel ('Expectation values')

plt.legend()

plt.show()
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Monte Carlo time evolution
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Using the Improved Sampling Algorithm

Oftentimes, quantum jumps are rare. This is especially true in the context of simulating gates for quantum informa-
tion purposes, where typical gate times are orders of magnitude smaller than typical timescales for decoherence. In
this case, using the standard monte-carlo sampling algorithm, we often repeatedly sample the no-jump trajectory.
We can thus reduce the number of required runs by only sampling the no-jump trajectory once. We then extract
the no-jump probability p, and for all future runs we only sample random numbers r; where 1 > p, thus ensuring
that a jump will occur. When it comes time to compute expectation values, we weight the no-jump trajectory by p
and the jump trajectories by 1 — p. This algorithm is described in [Abd19] and can be utilized by setting the option
"improved_sampling" in the call to mcsolve:

data = mcsolve(H, psi®, times, [np.sqrt(0.1) * a], options={"improved_sampling": True}
=)

where in this case the first run samples the no-jump trajectory, and the remaining 499 trajectories are all guaranteed
to include (at least) one jump.

The power of this algorithm is most obvious when considering systems that rarely undergo jumps. For instance,
consider the following T1 simulation of a qubit with a lifetime of 10 microseconds (assuming time is in units of
nanoseconds)

times = np.linspace(0.0, 300.0, 100)
psi® = fock(2, 1)
sm = fock(2, 0) * fock(2, 1).dag(Q
omega = 2.0 * np.pi * 1.0
HO = -0.5 * omega * sigmaz()
gamma = 1/10000
data = mcsolve(
(continues on next page)
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(continued from previous page)

[HO®], psi®, times, [np.sqrt(gamma) * sm], [sm.dag() * sm], ntraj=100
)
data_imp = mcsolve(

[HO®], psi®, times, [np.sqrt(gamma) * sm], [sm.dag() * sm], ntraj=100,

options={"improved_sampling": True}

plt.figure(Q

plt.plot(times, data.expect[0], label="original")

plt.plot(times, data_imp.expect[0], label="improved sampling")
plt.plot(times, np.exp(-gamma * times), label=r"$\exp(-\gamma t)$")
plt.title('Monte Carlo: improved sampling algorithm')
plt.xlabel("time [ns]")

plt.ylabel(r"$p_{1}$")

plt.legend()

plt.show()

Monte Carlo: improved sampling algorithm
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improved sampling
0.995 - — expl=v)
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0.970 A

0 50 100 150 200 250 300

time [ns]

The original sampling algorithm samples the no-jump trajectory on average 96.7% of the time, while the improved
sampling algorithm only does so once.
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Reproducibility

For reproducibility of Monte-Carlo computations it is possible to set the seed of the random number generator:

>>> resl = mcsolve(H, psi®, tlist, c_ops, e_ops=e_ops, seeds=1, ntraj=1)
>>> res2 = mcsolve(H, psi®, tlist, c_ops, e_ops=e_ops, seeds=1, ntraj=1)
>>> res3 = mcsolve(H, psi®, tlist, c_ops, e_ops=e_ops, seeds=2, ntraj=1)
>>> np.allclose(resl, res2)

True

>>> np.allclose(resl, res3)

False

The seeds parameter can either be an integer or a numpy SeedSequence, which will then be used to create seeds
for each trajectory. Alternatively it may be a list of intergers or SeedSequence s with one seed for each trajectories.
Seeds available in the result object can be used to redo the same evolution:

>>> resl = mcsolve(H, psi®, tlist, c_ops, e_ops=e_ops, ntraj=10)

>>> res2 = mcsolve(H, psi®, tlist, c_ops, e_ops=e_ops, seeds=resl.seeds, ntraj=10)
>>> np.allclose(resl, res2)

True

Running trajectories in parallel

Monte-Carlo evolutions often need hundreds of trajectories to obtain sufficient statistics. Since all trajectories are
independent of each other, they can be computed in parallel. The option map can take "serial"”, "parallel” or
"loky". Both "parallel" and "loky" compute trajectories on multiple CPUs using respectively the multipro-
cessing and loky python modules.

>>> res_par = mcsolve(H, psi®, tlist, c_ops, e_ops=e_ops, options={"map": "parallel"},
— seeds=1)

>>> res_ser = mcsolve(H, psi®, tlist, c_ops, e_ops=e_ops, options={"map": "serial"},.
—seeds=1)

>>> np.allclose(res_par.average_expect, res_ser.average_expect)

True

Note that when running in parallel, the order in which the trajectories are added to the result can differ. Therefore

>>> print(res_par.seeds[:3])

[SeedSequence(entropy=1, spawn_key=(1,),),
SeedSequence(entropy=1, spawn_key=(0,),),
SeedSequence(entropy=1, spawn_key=(2,),)]

>>> print(res_ser.seeds[:3])

[SeedSequence(entropy=1, spawn_key=(0,),),
SeedSequence(entropy=1, spawn_key=(1,),),
SeedSequence(entropy=1, spawn_key=(2,),)]
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Photocurrent

The photocurrent, previously computed using the photocurrent_sesolve and photocurrent_sesolve func-
tions, are now included in the output of mcsolve as result.photocurrent.

-

a

times = np.linspace(0.0, 10.0, 200)
psi® = tensor(fock(2, 0), fock(10, 8))

= tensor(geye(2), destroy(10))

sm = tensor(destroy(2), geye(10))

e_ops = [a.dag() * a, sm.dag() * sm]

H = 2*np.pi*a.dagQ*a + 2*np.pi*sm.dag*sm + 2*np.pi*0.25*(sm*a.dag() + sm.dag()*a)
data = mcsolve(H, psi®, times, [np.sqrt(0.1) * al], e_ops=e_ops)

plt.figure(Q
plt.plot((times[:-1] + times[1:])/2, data.photocurrent[0])
plt.title('Monte Carlo Photocurrent')
plt.xlabel('Time")
plt.ylabel('Photon detections')
plt.show()
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Open Systems

mcsolve can be used to study systems which have measurement and dissipative interactions with their environment.
This is done by passing a Liouvillian including the dissipative interaction to the solver instead of a Hamiltonian.

In this case the effective Liouvillian becomes:

1
Leffp = Lsysp - 5 Z (C;fcnp + pchLrCn) )

?

With the collapse probability becoming:
dp = ot Ztr (p(t)CECy)

And a jump with the collapse operator n changing the state as:

p(t + (%) = Onp(t)c:{/tr (Cnp(t)ci) )

We can redo the previous example for a situation where only half the emitted photons are detected.

(3.9)

(3.10)

(3.11)

times = np.linspace(0.0, 10.0, 200)
psi® = tensor(fock(2, 0), fock(10, 8))
a = tensor(geye(2), destroy(l10))

sm = tensor(destroy(2), qgeye(10))

H = 2*np.pi*a.dag()*a + 2*np.pi*sm.dag()*sm + 2*np.pi*0.25*(sm*a.dag() + sm.dag()*a)

L = liouvillian(H, [np.sqrt(0.05) * a])

data = mcsolve(L, psi®, times, [np.sqrt(0.05) * a], e_ops=[a.dag() * a, sm.dag() *.

—sm])

plt.figure(Q

plt.plot((times[:-1] + times[1:])/2, data.photocurrent[0])
plt.title('Monte Carlo Photocurrent')

plt.xlabel('Time")

plt.ylabel('Photon detections')

plt.show()
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3.6.5 Krylov Solver

Introduction

The Krylov-subspace method is a standard method to approximate quantum dynamics. Let |¢)) be a state in
a D-dimensional complex Hilbert space that evolves under a time-independent Hamiltonian H. Then, the V-
dimensional Krylov subspace associated with that state and Hamiltonian is given by

Ky = span {|0), H[v), ..., HN 1)}, (3.12)

where the dimension NV < D is a parameter of choice. To construct an orthonormal basis By for I, the simplest
algorithm is the well-known Lanczos algorithm, which provides a sort of Gram-Schmidt procedure that harnesses
the fact that orthonormalization needs to be imposed only for the last two vectors in the basis. Written in this basis
the time-evolved state can be approximated as

() = e" ) m Pye Py [p) = Vie TNV [y) = [yn (1)), (3.13)

where Iy = VyH V;rv is the Hamiltonian reduced to the Krylov subspace (which takes a tridiagonal matrix form),
and V;r\, is the matrix containing the vectors of the Krylov basis as columns.

With the above approximation, the time-evolution is calculated only with a smaller square matrix of the desired
size. Therefore, the Krylov method provides huge speed-ups in computation of short-time evolutions when the
dimension of the Hamiltonian is very large, a point at which exact calculations on the complete subspace are
practically impossible.

One of the biggest problems with this type of method is the control of the error. After a short time, the error starts
to grow exponentially. However, this can be easily corrected by restarting the subspace when the error reaches a
certain threshold. Therefore, a series of M Krylov-subspace time evolutions provides accurate solutions for the
complete time evolution. Within this scheme, the magic of Krylov resides not only in its ability to capture complex
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time evolutions from very large Hilbert spaces with very small dimenions M, but also in the computing speed-up
it presents.

For exceptional cases, the Lanczos algorithm might arrive at the exact evolution of the initial state at a dimension
Mpp < M. This is called a happy breakdown. For example, if a Hamiltonian has a symmetry subspace Dy, < M,
then the algorithm will optimize using the value math:M_{hbj}<M:, at which the evolution is not only exact but
also cheap.

Krylov Solver in QuTiP

In QuTiP, Krylov-subspace evolution is implemented as the function krylovsolve. Arguments are nearly the
same as sesolve function for master-equation evolution, except that the Hamiltonian cannot depend on time, the
initial state must always be a ket vector, (it cannot be used to compute propagators) and an additional parameter
krylov_dim is needed. krylov_dim defines the maximum allowed Krylov-subspace dimension.

Let’s solve a simple example using the algorithm in QuTiP to get familiar with the method.

>>> dim = 100

>>> jx = jmat((dim - 1) / 2.0, "x")
>>> jy = jmat((dim - 1) / 2.0, "y")
>>> jz = jmat((dim - 1) / 2.0, "z")
>>> e_ops = [jx, jy, jzl

>>>H = (jz + jx) / 2

>>> psi® = rand_ket(dim, seed=1)

>>> tlist = np.linspace(0.0, 10.0, 200)

>>> results = krylovsolve(H, psi®, tlist, krylov_dim=20, e_ops=e_ops)
>>> plt.figure()

>>> for expect in results.expect:

>>> plt.plot(tlist, expect)

>>> plt.legend(('jmat x', "jmat y', 'jmat z'))

>>> plt.xlabel('Time')

>>> plt.ylabel('Expectation values')

>>> plt.show()
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3.6.6 Stochastic Solver

When a quantum system is subjected to continuous measurement, through homodyne detection for example, it is
possible to simulate the conditional quantum state using stochastic Schrodinger and master equations. The solution
of these stochastic equations are quantum trajectories, which represent the conditioned evolution of the system given
a specific measurement record.

In general, the stochastic evolution of a quantum state is calculated in QuTiP by solving the general equation

dp(t) = dipdt + > donpdWy, (3.14)

where dW,, is a Wiener increment, which has the expectation values E[dW] = 0 and E[dW?2] = dt.

Stochastic Schrodinger Equation

The stochastic Schrodinger equation is given by (see section 4.4, [Wis09])

t 2
dy(t) = —iHy(t)dt =y (5”25" - %"Sn + eg) Y(t)dt+ (Sn - %") () AW, (3.15)

n

where H is the Hamiltonian, .S,, are the stochastic collapse operators, and e,, is

en = ($(1)|Sn + Sl (1)) (3.16)

In QuTiP, this equation can be solved using the function ssesolve, which is implemented by defining d; and ds ,,
from Equation (3.14) as

1 €2
— iy _ - T _ i
dq iH 5 E <SnSn enSn + 1 > , (3.17)

n
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and
doyp =5,— —. (3.18)

The solver ssesolve will construct the operators d; and ds , once the user passes the Hamiltonian (H) and the
stochastic operator list (sc_ops). As with the mcsolve, the number of trajectories and the seed for the noise reali-
sation can be fixed using the arguments: ntraj and seeds, respectively. If the user also requires the measurement
output, the options entry {"store_measurement"”: True} should be included.

Per default, homodyne is used. Heterodyne detections can be easily simulated by passing the arguments
'heterodyne=True' to ssesolve.

Stochastic Master Equation

When the initial state of the system is a density matrix p, the stochastic master equation solver qutip.
stochastic.smesolve must be used. The stochastic master equation is given by (see section 4.4, [Wis09])

dp(t) = —i[H, p(t)]dt + D[A]p(t)dt + H[A]pdW (t) (3.19)
where
D[Alp = % [24pAT — pATA — AT Ap| (3.20)
and
H[Alp = Ap(t) + p(t) AT — tr[Ap(t) + p(t) AT]. (3.21)

In QuTiP, solutions for the stochastic master equation are obtained using the solver smesolve. The implementation
takes into account 2 types of collapse operators. C; (c_ops) represent the dissipation in the environment, while S,
(sc_ops) are monitored operators. The deterministic part of the evolution, described by the d; in Equation (3.14),
takes into account all operators C; and S, :

dy = —i[H(t),p(t)] + Z D[Cilp + Z D[S,]p, (3.22)
The stochastic part, ds ,,, is given solely by the operators .S,,

do,n = Spp(t) + p(t)S] — tr (Sup(t) + p(t)SE) p(t). (3.23)

As in the stochastic Schrodinger equation, heterodyne detection can be chosen by passing heterodyne=True.

Example

Below, we solve the dynamics for an optical cavity at 0K whose output is monitored using homodyne detection. The
cavity decay rate is given by « and the A is the cavity detuning with respect to the driving field. The measurement
operators can be passed using the option m_ops. The homodyne current .J,, is calculated using

Ja = (z) + dW/dt, (3.24)

where z is the operator passed using m_ops. The results are available in result.measurements.

# parameters

DIM = 20 # Hilbert space dimension
DELTA = 5 * 2 * np.pi # cavity detuning

KAPPA = 2 # cavity decay rate
INTENSITY = 4 # intensity of initial state

NUMBER_OF_TRAJECTORIES = 500

(continues on next page)
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(continued from previous page)

operators

= destroy(DIM)

a + a.dagQ

= DELTA * a.dag() * a

oM o

rho_0® = coherent(DIM, np.sqrt(INTENSITY))
times = np.arange(0®, 1, 0.0025)

stoc_solution = smesolve(
H, rho_0, times,
c_ops=[1],
sc_ops=[np.sqgrt (KAPPA) * a],
e_ops=[x],
ntraj=NUMBER_OF_TRAJECTORIES,
options={"dt": 0.00125, "store_measurement": True,}

)

fig, ax = plt.subplots(Q)

ax.set_title('Stochastic Master Equation - Homodyne Detection')

ax.plot(times[1:], np.array(stoc_solution.measurement) .mean(axis=0)[0, :].real,
'r', lw=2, label=r'$J_x$")

ax.plot(times, stoc_solution.expect[0], 'k', lw=2,
label=r'$\langle x \rangle$')

ax.set_xlabel('Time")

\ax.legend()

Stochastic Master Equation - Homodyne Detection

—_— Jx

6 —_— (X)

0.0 0.2 0.4 0.6 0.8 1.0
Time

The stochastic solvers share many features with mcsolve, such as end conditions, seed control and running in
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parallel. See the sections Changing the Number of Trajectories, Reproducibility and Running trajectories in parallel
for details.

3.6.7 Solving Problems with Time-dependent Hamiltonians

Time-Dependent Operators

In the previous examples of quantum evolution, we assumed that the systems under consideration were described by
time-independent Hamiltonians. However, many systems have explicit time dependence in either the Hamiltonian,
or the collapse operators describing coupling to the environment, and sometimes both components might depend on
time. The time-evolutions solvers such as sesolve, brmesolve, etc. are all capable of handling time-dependent
Hamiltonians and collapse terms. QuTiP use QobjEvo to represent time-dependent quantum operators. There are
three different ways to build a QobjEvo:

1. Function based: Build the time dependent operator from a function returning a Qobj:

def oper(t):
return num(N) + (destroy(N) + create(N)) * np.sin(t)

H_t = QobjEvo(oper)

1. List based: The time dependent quantum operator is represented as a list of qobj and [qobj,
coefficient] pairs:

H_t = QobjEvo([num(N), [create(N), lambda t: np.sin(t)], [destroy(N), lambda t: np.
—sin(t)1])

3. coefficent based: The product of a Qobj with a Coefficient, created by the coefficient function, result in
a QobjEvo:

coeff = coefficent(lambda t: np.sin(t))
H_t = num(N) + (destroy(N) + create(N)) * coeff

These 3 examples will create the same time dependent operator, however the function based method will usually
be slower when used in solver.

Most solvers accept a QobjEvo when an operator is expected: this include the Hamiltonian H, collapse operators,
expectation values operators, the operator of brmesolve’s a_ops, etc. Exception are krylovsolve’s Hamiltonian
and HEOM’s Bath operators.

Most solvers will accept any format that could be made into a QobjEvo for the Hamiltonian. All of the following
are equivalent:

result = mesolve(H_t, ...)
result = mesolve([num(N), [destroy(N) + create(N), lambda t: np.sin(t)]], ...)
result = mesolve(oper, ...)

Collapse operator also accept a list of object that could be made into QobjEvo. However one needs to be careful
about not confusing the list nature of the c¢_ops parameter with list format quantum system. In the following call:

result = mesolve(H_t, ..., c_ops=[num(N), [destroy(N) + create(N), lambda t: np.
—sin(t)]11)

mesolve will see 2 collapses operators: num(N) and [destroy(N) + create(N), lambda t: np.sin(t)].
It is therefore preferred to pass each collapse operator as either a Qobj or a QobjEvo.

As an example, we will look at a case with a time-dependent Hamiltonian of the form H = Hy + f(¢)H; where
f(t) is the time-dependent driving strength given as f(t) = Aexp [— (t/ 0)2}. The following code sets up the
problem
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ustate = basis(3, 0)
excited = basis(3, 1)
ground = basis(3, 2)

N = 2 # Set where to truncate Fock state for cavity
sigma_ge = tensor(qeye(N), ground * excited.dag()) # [g><e]|
sigma_ue = tensor(geye(N), ustate * excited.dag()) # [u><e]
a = tensor(destroy(N), qeye(3))

ada = tensor(num(N), geye(3))

c_ops = [] # Build collapse operators

kappa = 1.5 # Cavity decay rate

c_ops.append(np.sqrt(kappa) * a)

gamma = 6 # Atomic decay rate

c_ops.append(np.sqrt(5*gamma/9) * sigma_ue) # Use Rb branching ratio of 5/9 e->u
c_ops.append(np.sqrt(4“gamma/9) * sigma_ge) # 4/9 e->g

t = np.linspace(-15, 15, 100) # Define time vector
psi® = tensor(basis(N, 0), ustate) # Define initial state

state_GG = tensor(basis(N, 1), ground) # Define states onto which to project
sigma_GG state_GG * state_GG.dag(Q

state_UU = tensor(basis(N, 0), ustate)

sigma_UU = state_UU * state_UU.dag(Q)

= 5 # coupling strength
0 = -g * (sigma_ge.dag() * a + a.dag() * sigma_ge) # time-independent term
Hl = (sigma_ue.dag() + sigma_ue) # time-dependent term

ja=fil(e]

Given that we have a single time-dependent Hamiltonian term, and constant collapse terms, we need to specify a
single Python function for the coefficient f(¢). In this case, one can simply do

def H1_coeff(t):
return 9 * np.exp(-(t / 5.) ** 2)

In this case, the return value depends only on time. However it is possible to add optional arguments to the call,
see Using arguments. Having specified our coefficient function, we can now specify the Hamiltonian in list format
and call the solver (in this case mesolve)

H = [H®, [H1, Hl_coeff]]
output = mesolve(H, psi®, t, c_ops, [ada, sigma_UU, sigma_GG])

We can call the Monte Carlo solver in the exact same way (if using the default ntraj=500):

[output = mcsolve(H, psi®, t, c_ops, [ada, sigma_UU, sigma_GG]) }

The output from the master equation solver is identical to that shown in the examples, the Monte Carlo however
will be noticeably off, suggesting we should increase the number of trajectories for this example. In addition, we
can also consider the decay of a simple Harmonic oscillator with time-varying decay rate

kappa = 0.5

def col_coeff(t, args): # coefficient function
return np.sqrt(kappa * np.exp(-t))

10 # number of basis states
a = destroy(N)

=
1l

(continues on next page)
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(continued from previous page)

H = a.dag() * a # simple HO

psi® = basis(N, 9) # initial state

c_ops [QobjEvo([a, col_coeff])] # time-dependent collapse term
times = np.linspace(®, 10, 100)

output = mesolve(H, psi®, times, c_ops, [a.dag() * a])

Qobjevo

QobjEvo as a time dependent quantum system, as it’s main functionality create a QobJj at a time:

>>> print(H_t(np.pi / 2))
Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True

Qobj data =
[[6. 1.]
[1. 1.]]

QobjEvo shares a lot of properties with the Qobj.

Property Attribute Description

Dimensions Q.dims Shapes the tensor structure.

Shape Q. shape Dimensions of underlying data matrix.

Type Q. type Is object of type ‘ket, ‘bra’, ‘oper’, or ‘super’?
Representation Q. superrep Representation used if fype is ‘super’?

Is constant Q.isconstant Does the QobjEvo depend on time.

QobjEvo’s follow the same mathematical operations rules than Qobj. They can be added, subtracted and multiplied
with scalar, Qobj and QobjEvo. They also support the dag and trans and conj method and can be used for tensor
operations and super operator transformation:

H = tensor(H_t, geye(2))
c_op = tensor(QobjEvo([destroy(N), lambda t: np.exp(-t)]), sigmax())

L =-1j * (spre(H) - spost(H.dag()))
L += spre(c_op) * spost(c_op.dag()) - 0.5 * spre(c_op.dag() * c_op) - 0.5 * spost(c_
—op.dag() * c_op)

Or equivalently:

[L = liouvillian(H, [c_op])

Using arguments

Until now, the coefficients were only functions of time. In the definition of H1_coeff, the driving amplitude A and
width sigma were hardcoded with their numerical values. This is fine for problems that are specialized, or that we
only want to run once. However, in many cases, we would like study the same problem with a range of parameters
and not have to worry about manually changing the values on each run. QuTiP allows you to accomplish this
using by adding extra arguments to coefficients function that make the QobjEvo. For instance, instead of explicitly
writing 9 for the amplitude and 5 for the width of the gaussian driving term, we can add an args positional variable:

>>> def Hl_coeff(t, args):
>>> return args['A'] * np.exp(-(t/args['sigma'])**2)

or, new from v5, add the extra parameter directly:
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>>> def Hl_coeff(t, A, sigma):
>>> return A * np.exp(-(t / sigma)**2)

When the second positional input of the coefficient function is named args, the arguments are passed as a Python
dictionary of key: value pairs. Otherwise the coeflicient function is called as coeff(t, **args). In the
last example, args = {'A': a, 'sigma': b} where a and b are the two parameters for the amplitude and
width, respectively. This args dictionary need to be given at creation of the QobjEvo when function using then
are included:

>>> system = [sigmaz(), [sigmax(), Hl_coeff]]
>>> args={'A': 9, 'sigma': 5}
>>> gevo = QobjEvo(system, args=args)

But without args, the QobjEvo creation will fail:

>>> QobjEvo(system)
TypeError: Hl_coeff() missing 2 required positional arguments: 'A' and 'sigma'

When evaluation the QobjEvo at a time, new arguments can be passed either with the args dictionary positional
arguments, or with specific keywords arguments:

>>> print(gevo(l))
Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True

Qobj data =
[[ 1. 8.64710495]
[ 8.64710495 -1. 1]

>>> print(gevo(l, {"A": 5, "sigma": 0.2}))
Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True
Qobj data =
[[ 1.00000000e+00 6.94397193e-11]
[ 6.94397193e-11 -1.00000000e+00] ]
>>> print(gevo(l, A=5))
Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True

Qobj data =
[[ 1. 4.8039472]
[ 4.8039472 -1. 11

Whether the original coefficient used the args or specific input does not matter. It is fine to mix the different
signatures.

Solver calls take an args input that is used to build the time dependent system. If the Hamiltonian or collapse
operators are already QobjEvo, their arguments will be overwritten.

def system(t, A, sigma):
return H® + H1 * (A * np.exp(-(t / sigma)**2))

mesolve(system, ..., args=args)

To update arguments of an existing time dependent quantum system, you can pass the previous object as the input
of a QobjEvo with new args:

>>> new_gevo = QobjEvo(gevo, args={"A": 5, "sigma": 0.2})
>>> new_gevo(1l) == gevo(l, {"A": 5, "sigma": 0.2})
True

QobjEvo created from a monolithic function can also use arguments:

84 Chapter 3. Users Guide




QuTiP: Quantum Toolbox in Python, Release 5.0.1

def oper(t, w):
return num(N) + (destroy(N) + create(N)) * np.sin(t*w)

H_t = QobjEvo(oper, args={"w": np.pi})

When merging two or more QobjEvo, each will keep it arguments, but calling it with updated are will affect all
parts:

>>> gevol = QobjEvo([[sigmap(), lambda t, a: a]], args={"a": 1})

>>> gevo2 = QobjEvo([[sigmam(), lambda t, a: a]], args={"a": 23})

>>> summed_evo = gevol + gevo2

>>> print (summed_evo(0))

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=False

Qobj data =
[[6. 1.]
[2. 0.]]

>>> print(summed_evo(0, a=3, b=1))
Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', isherm=True
Qobj data =
[[0. 3.]
[3. 0.]]

Coefficients

To build time dependent quantum system we often use a list of Qobj and Coefficient. These Coefficient
represent the strength of the corresponding quantum object a function that of time. Up to now, we used functions
for these, but QuTiP support multiple formats: callable, strings, array.

Function coefficients : Use a callable with the signature £(t: double, ...) -> double as coefficient. Any
function or method that can be called by £(t, args), £(t, **args) is accepted.

def coeff(t, A, sigma):
return A * np.exp(-(t / sigma)**2)

H = QobjEvo([HO®, [H1, coeff]], args=args)

String coefficients : Use a string containing a simple Python expression. The variable t, common mathematical
functions such as sin or exp an variable in args will be available. If available, the string will be compiled using
cython, fixing variable type when possible, allowing slightly faster execution than function. While the speed up
is usually very small, in long evolution, numerous calls to the functions are made and it’s can accumulate. From
version 5, compilation of the coefficient is done only once and saved between sessions. When either the cython or
filelock modules are not available, the code will be executed in python using exec with the same environment .
This, however, as no advantage over using python function.

coeff = "A * exp(-(t / sigma)**2)"

H = QobjEvo([HO®, [H1, coeff]], args=args)

Here is a list of defined variables:
sin, cos, tan, asin, acos, atan, pi, sinh, cosh, tanh, asinh, acosh, atanh, exp, log, logl®,
erf, zerf, sqrt, real, imag, conj, abs, norm, arg, proj, np (numpy), spe (scipy.special) and
cython_special (scipy cython interface).

Array coefficients : Use the spline interpolation of an array. Useful when the coefficient is hard to define as a
function or obtained from experimental data. The times at which the array are defined must be passed as tlist:
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times = np.linspace(-sigma*5, sigma*5, 500)
coeff = A * exp(-(times / sigma)**2)

H = QobjEvo([HO®, [H1, coeff]], tlist=times)

Per default, a cubic spline interpolation is used, but the order of the interpolation can be controlled with the order
input: Outside the interpolation range, the first or last value are used.

times = np.array([0, 0.1, 0.3, 0.6, 1.0])
coeff = times * (1.1 - times)
tlist = np.linspace(-0.1, 1.1, 25)

H = QobjEvo([qeye(1l), coeff], tlist=times)
plt.plot(tlist, [H(t).norm() for t in tlist], label="CubicSpline")

H = QobjEvo([qeye(l), coeff], tlist=times, order=0)
plt.plot(tlist, [H(t).norm() for t in tlist], label="step")

H = QobjEvo([qeye(1l), coeff], tlist=times, order=1)
plt.plot(tlist, [H(t).norm() for t in tlist], label="linear")

plt.legend()

0.30 4 —— CubicSpline
step
—— linear

0.25 ~
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When using array coefficients in solver, if the time dependent quantum system is in list format, the solver tlist is
used as times of the array. This is often not ideal as the interpolation is usually less precise close the extremities
of the range. It is therefore better to create the QobjEvo using an extended range prior to the solver:
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N=25
times np.linspace(-0.1, 1.1, 13)
coeff = np.exp(-times)

c_ops [QobjEvo([destroy(N), coeff], tlist=times)]

tlist = np.linspace(®, 1, 11)

data = mesolve(geye(N), basis(N, N-1), tlist, c_ops=c_ops, e_ops=[num(N)]).expect[0]
plt.plot(tlist, data)

4.0 1
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3.2 1
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2.8 1

2.6 1
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Different coefficient types can be mixed in a QobjEvo.

Given the multiple choices of input style, the first question that arises is which option to choose? In short, the
function based method (first option) is the most general, allowing for essentially arbitrary coefficients expressed
via user defined functions. However, by automatically compiling your system into C++ code, the second option
(string based) tends to be more efficient and run faster. Of course, for small system sizes and evolution times, the
difference will be minor. Lastly the spline method is usually as fast the string method, but it cannot be modified
once created.
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Working with pulses

Special care is needed when working with pulses. ODE solvers select the step length automatically and can miss
thin pulses when not properly warned. Integrations methods with variable step sizes have the max_step option
that control the maximum length of a single internal integration step. This value should be set to under half the
pulse width to be certain they are not missed.

For example, the following pulse is missed without fixing the maximum step length.

def pulse(t):
return 10 * np.pi * (0.7 < t < 0.75)

tlist = np.linspace(®, 1, 201)
H = [sigmaz(), [sigmax(), pulse]l]
psi® = basis(2,1)

datal sesolve(H, psi®, tlist, e_ops=num(2)).expect[0]
data2 = sesolve(H, psi®, tlist, e_ops=num(2), options={"max_step": 0.01}).expect[0]

plt.plot(tlist, datal, label="no max_step")
plt.plot(tlist, data2, label="fixed max_step")
plt.fill_between(tlist, [pulse(t) for t in tlist], color="g", alpha=0.2, label="pulse

(1]
—

plt.ylim([-0.1, 1.1])
plt.legend(loc="center left")
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0.8 4
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3.6.8 Solver Class Interface

In QuTiP version 5 and later, solvers such as mesolve, mcsolve also have a class interface. The class interface
allows reusing the Hamiltonian and fine tuning many details of how the solver is run.

Examples of some of the solver class features are given below.

Reusing Hamiltonian Data

There are many cases where one would like to study multiple evolutions of the same quantum system, whether
by changing the initial state or other parameters. In order to evolve a given system as fast as possible, the solvers
in QuTiP take the given input operators (Hamiltonian, collapse operators, etc) and prepare them for use with the
selected ODE solver.

These operations are usually reasonably fast, but for some solvers, such as brmesolve or fmmesolve, the overhead
can be significant. Even for simpler solvers, the time spent organizing data can become appreciable when repeatedly
solving a system.

The class interface allows us to setup the system once and reuse it with various parameters. Most ...solve
function have a paired . ..Solver class, with a . .Solver.run method to run the evolution. At class instance
creation, the physics (H, c_ops, a_ops, etc.) and options are passed. The initial state, times and expectation
operators are only passed when calling run:

times = np.linspace(0.0, 6.0, 601)

a = tensor(geye(2), destroy(10))

sm = tensor(destroy(2), geye(10))

e_ops = [a.dag() * a, sm.dag() * sm]

H = QobjEvo(
[a.dag)*a + sm.dag()*sm, [(sm*a.dag() + sm.dag()*a), lambda t, A: A]],
args={"A": 0.5*np.pi}

)

solver = MESolver(H, c_ops=[np.sqrt(0.1) * a], options={"atol": 1le-8})
solver.options["normalize_output"] = True

psi® = tensor(fock(2, 0), fock(1®, 5))

datal = solver.run(psi®, times, e_ops=e_ops)

psil = tensor(fock(2, 0), coherent(10, 2 - 1j))

data2 = solver.run(psil, times, e_ops=e_ops)

plt.figure(Q

plt.plot(times, datal.expect[0®], "b", times, datal.expect[1], "r", lw=2)
plt.plot(times, data2.expect[0], 'b--', times, data2.expect[1l], 'r--', lw=2)
plt.title('Master Equation time evolution')

plt.xlabel('Time', fontsize=14)

plt.ylabel ('Expectation values', fontsize=14)

plt.legend(("cavity photon number", "atom excitation probability"))
plt.show()
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Master Equation time evolution
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Note that as shown, options can be set at initialization or with the options property.

The simulation parameters, the args of the QobjEvo passed as system operators, can be updated at the start of a
run:

datal = solver.run(psi®, times, e_ops=e_ops)
data?2 solver.run(psi®, times, e_ops=e_ops, args={"A": 0.25*np.pi})
data3 = solver.run(psi®, times, e_ops=e_ops, args={"A": 0.125*np.pi})

plt.figure()

plt.plot(times, datal.expect[0], label="A=pi/2")
plt.plot(times, data2.expect[0], label="A=pi/4")
plt.plot(times, data3.expect[0], label="A=pi/8")
plt.title('Master Equation time evolution')
plt.xlabel('Time', fontsize=14)

plt.ylabel ('Expectation values', fontsize=14)
plt.legend()

plt.show()
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Stepping through the run

The solver class also allows to run through a simulation one step at a time, updating args at each step:

dat

a = [5.]

solver.start(state®=psi®, tO=times[0])

for

t in times[1:]:
psi_t = solver.step(t, args={"A": np.pi*np.exp(-(t-3)**2)})
data.append(expect(e_ops[0], psi_t))

plt.figure()

plt.plot(times, data)

plt.title('Master Equation time evolution')

plt.xlabel('Time', fontsize=14)

plt.ylabel ('Expectation values', fontsize=14)

plt.legend(("cavity photon number"))

plt.show()
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Note: This is an example only, updating a constant args parameter between step should not replace using a
function as QobjEvo’s coefficient.

Note: It is possible to create multiple solvers and to advance them using step in parallel. However, many ODE
solver, including the default adams method, only allow one instance at a time per process. QuTiP supports using
multiple solver instances of these ODE solvers but with a performance cost. In these situations, using dop853 or
vern9 integration method is recommended instead.

Feedback: Accessing the solver state from evolution operators

The state of the system during the evolution is accessible via properties of the solver classes.

Each solver has a StateFeedback and ExpectFeedback class method that can be passed as arguments to time
dependent systems. For example, ExpectFeedback can be used to create a system which uncouples when there
are 5 or fewer photons in the cavity.

def f(t, el):
ex = (el.real - 5)
return (ex > 0) * ex * 10

times = np.linspace(0.0, 1.0, 301)
a = tensor(geye(2), destroy(10))
sm = tensor(destroy(2), geye(10))
e_ops = [a.dag() * a, sm.dag() * sm]

(continues on next page)
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psi® = tensor(fock(2, 0), fock(10, 8))
e_ops = [a.dag(Q) * a, sm.dag() * sm]

H =

[a*a.dag(), [sm*a.dag() + sm.dag()*a,

(continued from previous page)

1]

data = mesolve(H, psi®, times, c_ops=[a], e_ops=e_ops,

args={"el": MESolver.ExpectFeedback(a
) .expect
plt.figure()
plt.plot(times, data[0])
plt.plot(times, data[l])
plt.title('Master Equation time evolution
plt.xlabel('Time', fontsize=14)
plt.ylabel ('Expectation values', fontsize
plt.legend(("cavity photon number", "atom
plt.show()

.dag() * a)}

D)

=14)
excitation probability™))

Master Equation time evolution

Expectation values

—— cavity photon number
atom excitation probability

0.0 0.2 0.4

0.6 0.8 1.0
Time
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3.6.9 Bloch-Redfield master equation

Introduction

The Lindblad master equation introduced earlier is constructed so that it describes a physical evolution of the density
matrix (i.e., trace and positivity preserving), but it does not provide a connection to any underlying microscopic
physical model. The Lindblad operators (collapse operators) describe phenomenological processes, such as for
example dephasing and spin flips, and the rates of these processes are arbitrary parameters in the model. In many
situations the collapse operators and their corresponding rates have clear physical interpretation, such as dephasing
and relaxation rates, and in those cases the Lindblad master equation is usually the method of choice.

However, in some cases, for example systems with varying energy biases and eigenstates and that couple to an
environment in some well-defined manner (through a physically motivated system-environment interaction opera-
tor), it is often desirable to derive the master equation from more fundamental physical principles, and relate it to
for example the noise-power spectrum of the environment.

The Bloch-Redfield formalism is one such approach to derive a master equation from a microscopic system. It
starts from a combined system-environment perspective, and derives a perturbative master equation for the system
alone, under the assumption of weak system-environment coupling. One advantage of this approach is that the
dissipation processes and rates are obtained directly from the properties of the environment. On the downside, it
does not intrinsically guarantee that the resulting master equation unconditionally preserves the physical properties
of the density matrix (because it is a perturbative method). The Bloch-Redfield master equation must therefore be
used with care, and the assumptions made in the derivation must be honored. (The Lindblad master equation is in
a sense more robust — it always results in a physical density matrix — although some collapse operators might not
be physically justified). For a full derivation of the Bloch Redfield master equation, see e.g. [Coh92] or [Bre02].
Here we present only a brief version of the derivation, with the intention of introducing the notation and how it
relates to the implementation in QuTiP.

Brief Derivation and Definitions

The starting point of the Bloch-Redfield formalism is the total Hamiltonian for the system and the environment
(bath): H = Hs + Hp + Hi, where H is the total system-+bath Hamiltonian, Hg and Hp are the system and bath
Hamiltonians, respectively, and Hj is the interaction Hamiltonian.

The most general form of a master equation for the system dynamics is obtained by tracing out the bath from the

von-Neumann equation of motion for the combined system (6 = —ih~*[H, p]). In the interaction picture the result
is
d t
Gps(®) = =n7 [ dr TuplHo(6), (Hi (), ps(r) @ pal) (3.25)
0

where the additional assumption that the total system-bath density matrix can be factorized as p(t) = ps(t) ® ps.
This assumption is known as the Born approximation, and it implies that there never is any entanglement between
the system and the bath, neither in the initial state nor at any time during the evolution. It is justified for weak
system-bath interaction.

The master equation (3.25) is non-Markovian, i.e., the change in the density matrix at a time ¢ depends on states
at all times 7 < ¢, making it intractable to solve both theoretically and numerically. To make progress towards a
manageable master equation, we now introduce the Markovian approximation, in which pg(7) is replaced by pg(t)
in Eq. (3.25). The result is the Redfield equation

d

L ps(t) = /0 dr Trp[Hr (8), [Hi(7), ps(t) @ ps]], (3.26)

which is local in time with respect the density matrix, but still not Markovian since it contains an implicit depen-
dence on the initial state. By extending the integration to infinity and substituting = — t — 7, a fully Markovian
master equation is obtained:

%ps(t) = —h2 /OOO dr Trg[H(t), [H(t — 7), ps(t) ® pB]]. (3.27)
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The two Markovian approximations introduced above are valid if the time-scale with which the system dynamics
changes is large compared to the time-scale with which correlations in the bath decays (corresponding to a “short-
memory” bath, which results in Markovian system dynamics).

The master equation (3.27) is still on a too general form to be suitable for numerical implementation. We therefore
assume that the system-bath interaction takes the form H; = Za A, ® B, and where A,, are system operators and
B,, are bath operators. This allows us to write master equation in terms of system operators and bath correlation
functions:

G0 = <12 X [ dr (g5 (1) [Aa 01450 = 7)pst) ~ At = 7)ps(0)45(0)
af
9ap(=7) [ps () Aa(t — T)Ap(t) — Aa(t)ps(t) Ap(t — 7)]},
where go3(7) = Trp [Ba(t)Bs(t — 7)ps] = (Ba(7)Bg(0)), since the bath state pp is a steady state.

In the eigenbasis of the system Hamiltonian, where A,,,(t) = Apn€mnt o = wy, — wy, and w,, are the
eigenfrequencies corresponding the eigenstate |m), we obtain in matrix form in the Schrédinger picture

d .
apab(t) = — iWapPab(t)

sec

—h™ 2 ZZ/ dr {gaﬂ [5bd ZA;TLAELC iWenT AgcAgbeiwcaT]

a,f c,d
+ Gas(~ [%ZA Zwtﬁﬁﬂwum@

where the “sec” above the summation symbol indicate summation of the secular terms which satisfy |wap — wed| <
Tdecay- This is an almost-useful form of the master equation. The final step before arriving at the form of the Bloch-
Redfield master equation that is implemented in QuTiP, involves rewriting the bath correlation function g(7) in
terms of the noise-power spectrum of the environment S(w) = [*_dre™7g(1):

o ; 1
| a7 0up(r)E7 = 3up(w) + haslw) 628)
0

where A\, (w) is an energy shift that is neglected here. The final form of the Bloch-Redfield master equation is

d ’ sec
%pab(t) = _Zwabpab(t) + z; Rabcdpcd(t)7 (329)
where
abcd - T Ta Z {6bd Z AgnAncSQf} wc'ﬂ) AgcAngaB (wca)

+%Zﬁwﬁ%wm<%%&mw}

is the Bloch-Redfield tensor.

The Bloch-Redfield master equation in the form Eq. (3.29) is suitable for numerical implementation. The input
parameters are the system Hamiltonian H, the system operators through which the environment couples to the
system A, and the noise-power spectrum S, (w) associated with each system-environment interaction term.

To simplify the numerical implementation we assume that A, are Hermitian and that cross-correlations between
different environment operators vanish, so that the final expression for the Bloch-Redfield tensor that is imple-
mented in QuTiP is

Rapeda = ——— {5bd Z AGnAncSa(wen) — AG.AGySa(wea)

+ dac Z AGnAnySawan) — AgeAgySa (de)} :
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Bloch-Redfield master equation in QuTiP

In QuTiP, the Bloch-Redfield tensor Eq. (3.30) can be calculated using the function bloch_redfield_tensor. It
takes two mandatory arguments: The system Hamiltonian H, a nested list of operator A,,, spectral density functions
S (w) pairs that characterize the coupling between system and bath. The spectral density functions are Python
callback functions that takes the (angular) frequency as a single argument.

To illustrate how to calculate the Bloch-Redfield tensor, let’s consider a two-level atom

1 1
H= —§AO'I — 5600 (3.30)
delta = 0.2 * 2*np.pi
eps® = 1.0 * 2*np.pi
gammal = 0.5
H = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()

def ohmic_spectrum(w):
if w == 0.0: # dephasing inducing noise
return gammal
else: # relaxation inducing noise
return ganmal / 2 * (w / (2 * np.pi)) * (w > 0.0)

R, ekets = bloch_redfield_tensor(H, a_ops=[[sigmax(), ohmic_spectrum]])

print (R)

Qutput:

Quantum object: dims = [[[2], [2]1], [[2], [2]]1], shape = (4, 4), type = super, isherm.
= False

Qobj data =
[[ ©. +0.j 0. +0.j 0. +0.j
0.24514517+0.j ]
[ O +0.j -0.16103412-6.4076169] O. +0.j
0. +0.j ]
[ 0. +0.j 0. +0.j -0.16103412+6.4076169j
0 +0.j ]
[ 0. +0.j 0. +0.j 0. +0.j
-0.24514517+0.j 11

Note that it is also possible to add Lindblad dissipation superoperators in the Bloch-Refield tensor by passing the
operators via the c_ops keyword argument like you would in the mesolve or mcsolve functions. For convenience,
the function bloch_redfield_tensor also returns the basis transformation operator, the eigen vector matrix,
since they are calculated in the process of calculating the Bloch-Redfield tensor R, and the ekets are usually needed
again later when transforming operators between the laboratory basis and the eigen basis. The tensor can be
obtained in the laboratory basis by setting fock_basis=True, in that case, the transformation operator is not
returned.

The evolution of a wavefunction or density matrix, according to the Bloch-Redfield master equation (3.29), can
be calculated using the QuTiP function mesolve using Bloch-Refield tensor in the laboratory basis instead of a
liouvillian. For example, to evaluate the expectation values of the o, 0, and o, operators for the example above,
we can use the following code:

delta = 0.2 * 2*np.pi
eps® = 1.0 * 2%np.pi
gammal = 0.5

(continues on next page)
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(continued from previous page)

H = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
def ohmic_spectrum(w):
if w == 0.0: # dephasing inducing noise
return gammal
else: # relaxation inducing noise
return gammal / 2 * (w / (2 * np.pi)) * (w > 0.0)
R = bloch_redfield_tensor(H, [[sigmax(), ohmic_spectrum]], fock_basis=True)
tlist = np.linspace(®, 15.0, 1000)
psi® = rand_ket(2, seed=1)
e_ops = [sigmax(), sigmay(), sigmaz()]
expt_list = mesolve(R, psi®, tlist, e_ops=e_ops).expect
sphere = Bloch()
sphere.add_points([expt_list[0], expt_list[1], expt_list[2]])
sphere.vector_color = ['r']

sphere.add_vectors(np.array([delta, 0, eps0®]) / np.sqrt(delta ** 2 + eps® ** 2))

sphere.make_sphere()
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10)

The two steps of calculating the Bloch-Redfield tensor and evolving according to the corresponding master equa-
tion can be combined into one by using the function brmesolve, which takes same arguments as mesolve and
mcsolve, save for the additional nested list of operator-spectrum pairs that is called a_ops.

[output = brmesolve(H, psi®, tlist, a_ops=[[sigmax(),ohmic_spectrum]], e_ops=e_ops) }

where the resulting output is an instance of the class Result.

Note: While the code example simulates the Bloch-Redfield equation in the secular approximation, QuTiP’s
implementation allows the user to simulate the non-secular version of the Bloch-Redfield equation by setting
sec_cutoff=-1, as well as do a partial secular approximation by setting it to a float , this float will become
the cutoff for the sum in (3.29) meaning terms with |w,, — w,q| greater than the cutoff will be neglected. Its default
value is 0.1 which corresponds to the secular approximation. For example the command

output = brmesolve(H, psi®, tlist, a_ops=[[sigmax(), ohmic_spectrum]],
e_ops=e_ops, sec_cutoff=-1)

will simulate the same example as above without the secular approximation. Note that using the non-secular version
may lead to negativity issues.
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Time-dependent Bloch-Redfield Dynamics

If you have not done so already, please read the section: Solving Problems with Time-dependent Hamiltonians.

As we have already discussed, the Bloch-Redfield master equation requires transforming into the eigenbasis of the
system Hamiltonian. For time-independent systems, this transformation need only be done once. However, for
time-dependent systems, one must move to the instantaneous eigenbasis at each time-step in the evolution, thus
greatly increasing the computational complexity of the dynamics. In addition, the requirement for computing all
the eigenvalues severely limits the scalability of the method. Fortunately, this eigen decomposition occurs at the
Hamiltonian level, as opposed to the super-operator level, and thus, with efficient programming, one can tackle
many systems that are commonly encountered.

For time-dependent Hamiltonians, the Hamiltonian itself can be passed into the solver like any other time depen-
dent Hamiltonian, as thus we will not discuss this topic further. Instead, here the focus is on time-dependent bath
coupling terms. To this end, suppose that we have a dissipative harmonic oscillator, where the white-noise dissi-
pation rate decreases exponentially with time x(¢) = x(0) exp(—t). In the Lindblad or Monte Carlo solvers, this
could be implemented as a time-dependent collapse operator list c_ops = [[a, 'sqrt(kappa*exp(-t))']].
In the Bloch-Redfield solver, the bath coupling terms must be Hermitian. As such, in this example, our coupling
operator is the position operator a+a.dag(). The complete example, and comparison to the analytic expression
is:

N = 10 # number of basis states to consider
a = destroy(N)
H = a.dag() * a

psi® = basis(N, 9) # initial state
kappa = 0.2 # coupling to oscillator
a_ops = [

([a+a.dag(), f'sqrt({kappa}*exp(-t))'], '(w>=0)"')
]
tlist = np.linspace(®, 10, 100)

out = brmesolve(H, psi®, tlist, a_ops, e_ops=[a.dag() * a])
actual_answer = 9.0 * np.exp(-kappa * (1.0 - np.exp(-tlist)))

plt.figure(

plt.plot(tlist, out.expect[0])
plt.plot(tlist, actual_answer)
plt.show()
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In many cases, the bath-coupling operators can take the form A = f(t)a + f(t)*a™. The operator parts of the
a_ops can be made of as many time-dependent terms as needed to construct such operator. For example consider
a white-noise bath that is coupled to an operator of the form exp(1j*t)*a + exp(-1j*t)* a.dag(). In this
example, the a_ops list would be:

a_ops = [
([[a, 'exp(1j*t)'], [a.dag(), 'exp(-1j*t)']], f'{kappa! * (w >= 0)")
]

where the first tuple element [[a, 'exp(1lj*t)'], [a.dag(), 'exp(-1j*t)']] tells the solver what is the
time-dependent Hermitian coupling operator. The second tuple £' {kappa} * (w >= 0)', gives the noise power
spectrum. A full example is:

N =10

wd = 1.0 * 2 * np.pi
g =0.05 * wl

kappa = 0.15

times = np.linspace(®, 25, 1000)

a destroy(N)
H=wd “ a.dag() * a + g * (a + a.dagQ)
psi® = ket2dm((basis(N, 4) + basis(N, 2) + basis(N, 0)).unit())
a_ops = [[
QobjEvo([[a, 'exp(1j*t)'], [a.dag(), 'exp(-1j*t)'11), (£'{kappa} * (w >= 0)')

1]
e_ops = [a.dag) * a, a + a.dag(Q)]

res_brme = brmesolve(H, psi®, times, a_ops, e_ops)
(continues on next page)
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(continued from previous page)

plt.figure(Q

plt.plot(times, res_brme.expect[0], label=r'S$ar{+}a$')
plt.plot(times, res_brme.expect[1], label=r'S$a+ar{+}$')
plt.legend()

plt.show()

2.0 — ata

a+at

1.5 4

1.0 A

0.5 4

0.0 A

Further examples on time-dependent Bloch-Redfield simulations can be found in the online tutorials.

3.6.10 Floquet Formalism

Introduction

Many time-dependent problems of interest are periodic. The dynamics of such systems can be solved for directly
by numerical integration of the Schrodinger or Master equation, using the time-dependent Hamiltonian. But they
can also be transformed into time-independent problems using the Floquet formalism. Time-independent problems
can be solve much more efficiently, so such a transformation is often very desirable.

In the standard derivations of the Lindblad and Bloch-Redfield master equations the Hamiltonian describing the
system under consideration is assumed to be time independent. Thus, strictly speaking, the standard forms of these
master equation formalisms should not blindly be applied to system with time-dependent Hamiltonians. However,
in many relevant cases, in particular for weak driving, the standard master equations still turns out to be useful for
many time-dependent problems. But a more rigorous approach would be to rederive the master equation taking
the time-dependent nature of the Hamiltonian into account from the start. The Floquet-Markov Master equation is
one such a formalism, with important applications for strongly driven systems (see e.g., [Gri98]).
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Here we give an overview of how the Floquet and Floquet-Markov formalisms can be used for solving time-
dependent problems in QuTiP. To introduce the terminology and naming conventions used in QuTiP we first give
a brief summary of quantum Floquet theory.

Floquet theory for unitary evolution

The Schrodinger equation with a time-dependent Hamiltonian H (t) is
0
H(t)¥(t) = zha\ﬂ(t), (3.31)

where U (t) is the wave function solution. Here we are interested in problems with periodic time-dependence, i.e.,
the Hamiltonian satisfies H (t) = H (¢t + T') where T is the period. According to the Floquet theorem, there exist
solutions to (3.31) of the form

U, (t) = exp(—ient/h) Py (1), (3.32)

where U, (t) are the Floquet states (i.e., the set of wave function solutions to the Schrodinger equation), @, (t) =
®,,(t+T) are the periodic Floguet modes, and ¢,, are the quasienergy levels. The quasienergy levels are constants
in time, but only uniquely defined up to multiples of 27 /T (i.e., unique value in the interval [0, 27 /7).

If we know the Floquet modes (for ¢ € [0, T7]) and the quasienergies for a particular H (¢), we can easily decompose
any initial wavefunction ¥ (¢ = 0) in the Floquet states and immediately obtain the solution for arbitrary ¢

U(t) = Z caVa(t) = Z Co exXp(—ient/R) Dy (1), (3.33)

where the coefficients ¢, are determined by the initial wavefunction ¥(0) = 3" _ ca¥4(0).

This formalism is useful for finding W(t) for a given H(t) only if we can obtain the Floquet modes ®,(t) and
quasienergies €, more easily than directly solving (3.31). By substituting (3.32) into the Schrodinger equation
(3.31) we obtain an eigenvalue equation for the Floquet modes and quasienergies

H(1)Bo (1) = ea®all), (3.34)

where H(t) = H(t) — ihO;. This eigenvalue problem could be solved analytically or numerically, but in QuTiP we
use an alternative approach for numerically finding the Floquet states and quasienergies [see e.g. Creffield et al.,
Phys. Rev. B 67, 165301 (2003)]. Consider the propagator for the time-dependent Schrodinger equation (3.31),
which by definition satisfies

UT +1t,t)¥(t) =9(T +1).
Inserting the Floquet states from (3.32) into this expression results in
U(T +t,t) exp(—ieat/h) Py (t) = exp(—iea (T + )/ h) P (T + 1),
or, since @, (T +t) = Dy (1),
U(T 4 t,t)P,(t) = exp(—ie, T/R) Do (t) = 1o Pa(t),
which shows that the Floquet modes are eigenstates of the one-period propagator. We can therefore find the Floquet

modes and quasienergies €, = —harg(n,)/T by numerically calculating U(T' + ¢,t) and diagonalizing it. In
particular this method is useful to find ®,,(0) by calculating and diagonalize U (T, 0).

The Floquet modes at arbitrary time ¢ can then be found by propagating ®,(0) to ®,,(¢) using the wave function
propagator U (t,0)U,,(0) = ¥, (t), which for the Floquet modes yields

U(t,0)®4(0) = exp(—ieat/h) Dy (t),

so that @, (t) = exp(ieat/h)U(t,0)P,(0). Since D, (t) is periodic we only need to evaluate it for ¢ € [0, T, and
from @, (¢ € [0,T]) we can directly evaluate (), ¥, () and U(t) for arbitrary large .
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Floquet formalism in QuTiP

QuTiP provides a family of functions to calculate the Floquet modes and quasi energies, Floquet state decomposi-
tion, etc., given a time-dependent Hamiltonian.

Consider for example the case of a strongly driven two-level atom, described by the Hamiltonian

1 1 1
H(t) = —iAagc — 5600'2 + §A sin(wt)o . (3.35)

In QuTiP we can define this Hamiltonian as follows:

>>> delta = 0.2 * 2*np.pi

>>> eps® = 1.0 * 2*np.pi

>>> A = 2.5 ¥ 2%np.pi

>>> omega = 1.0 * 2*np.pi

>>> HO® = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz()
>>> Hl1 = A/2.0 * sigmaz()

>>> args = {'w': omega}

>>> H = [H®, [H1, 'sin(w * t)']]

The ¢ = 0 Floquet modes corresponding to the Hamiltonian (3.35) can then be calculated using the FloquetBasis
class, which encapsulates the Floquet modes and the quasienergies:

>>> T = 2*np.pi / omega
>>> floquet_basis = FloquetBasis(H, T, args)
>>> f_energies = floquet_basis.e_quasi
>>> f_energies
array([-2.83131212, 2.83131212])
>>> f_modes_0 = floquet_basis.mode(0)
>>> f_modes_0
[Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[ 0.72964231+0.j ]
[-0.39993746+0.5546823j]1],
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket

Qobj data =
[[0.39993746+0.5546827]
[0.72964231+0.] 111

For some problems interesting observations can be draw from the quasienergy levels alone. Consider for example
the quasienergies for the driven two-level system introduced above as a function of the driving amplitude, calculated
and plotted in the following example. For certain driving amplitudes the quasienergy levels cross. Since the
quasienergies can be associated with the time-scale of the long-term dynamics due that 