1. Bruzda, V. Cappellini, H.-J. Sommers, K. Życzkowski, Random Quantum Operations, Phys. Lett. A 373, 320-324 (2009). doi:10.1016/j.physleta.2008.11.043.


Havel, T. Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. Journal of Mathematical Physics 44 2, 534 (2003). doi:10.1063/1.1518555.


Watrous, J. Theory of Quantum Information, lecture notes.

  1. Mezzadri, How to generate random matrices from the classical compact groups, Notices of the AMS 54 592-604 (2007). arXiv:math-ph/0609050.

  1. Mohseni, A. T. Rezakhani, D. A. Lidar, Quantum-process tomography: Resource analysis of different strategies, Phys. Rev. A 77, 032322 (2008). doi:10.1103/PhysRevA.77.032322.

  1. Grifoni, P. Hänggi, Driven quantum tunneling, Physics Reports 304, 299 (1998). doi:10.1016/S0370-1573(98)00022-2.


Gardineer and Zoller, Quantum Noise (Springer, 2004).


H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford, 2002).

  1. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, (Wiley, 1992).


C. Wood, J. Biamonte, D. G. Cory, Tensor networks and graphical calculus for open quantum systems. arXiv:1111.6950

  1. d’Alessandro, Introduction to Quantum Control and Dynamics, (Chapman & Hall/CRC, 2008).

    1. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput. 16, 1190 (1995). doi:10.1137/0916069

    1. Floether, P. de Fouquieres, and S. G. Schirmer, Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics, New J. Phys. 14, 073023 (2012). doi:10.1088/1367-2630/14/7/073023

  1. Lloyd and S. Montangero, Information theoretical analysis of quantum optimal control, Phys. Rev. Lett. 113, 010502 (2014). doi:10.1103/PhysRevLett.113.010502

  1. Doria, T. Calarco & S. Montangero, Optimal Control Technique for Many-Body Quantum Dynamics, Phys. Rev. Lett. 106, 190501 (2011). doi:10.1103/PhysRevLett.106.190501

  1. Caneva, T. Calarco, & S. Montangero, Chopped random-basis quantum optimization, Phys. Rev. A 84, 022326 (2011). doi:10.1103/PhysRevA.84.022326

  1. Rach, M. M. Müller, T. Calarco, and S. Montangero, Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape, Phys. Rev. A. 92, 062343 (2015). doi:10.1103/PhysRevA.92.062343


Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control, (Cambridge University Press, 2009).


N Khaneja et. al. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005). doi:10.1016/j.jmr.2004.11.004

  1. Donvil, P. Muratore-Ginanneschi, Quantum trajectory framework for general time-local master equations, Nat Commun 13, 4140 (2022). doi:10.1038/s41467-022-31533-8.

  1. Abdelhafez, D. I. Schuster, J. Koch, Gradient-based optimal control of open quantum systems using quantumtrajectories and automatic differentiation, Phys. Rev. A 99, 052327 (2019). doi:10.1103/PhysRevA.99.052327.