Experimental
Note
Functions here are untested and under-documented.
Continuous Variables
This module contains a collection functions for calculating continuous variable quantities from fock-basis representation of the state of multi-mode fields.
- correlation_matrix(basis, rho=None)[source]
Given a basis set of operators \(\{a\}_n\), calculate the correlation matrix:
\[C_{mn} = \langle a_m a_n \rangle\]- Parameters:
- basislist
List of operators that defines the basis for the correlation matrix.
- rhoQobj, optional
Density matrix for which to calculate the correlation matrix. If rho is None, then a matrix of correlation matrix operators is returned instead of expectation values of those operators.
- Returns:
- corr_matndarray
A 2-dimensional array of correlation values or operators.
- correlation_matrix_field(a1, a2, rho=None)[source]
Calculates the correlation matrix for given field operators \(a_1\) and \(a_2\). If a density matrix is given the expectation values are calculated, otherwise a matrix with operators is returned.
- Parameters:
- a1Qobj
Field operator for mode 1.
- a2Qobj
Field operator for mode 2.
- rhoQobj, optional
Density matrix for which to calculate the covariance matrix.
- Returns:
- cov_matndarray
Array of complex numbers or Qobj’s A 2-dimensional array of covariance values, or, if rho=0, a matrix of operators.
- correlation_matrix_quadrature(a1, a2, rho=None, g=1.4142135623730951)[source]
Calculate the quadrature correlation matrix with given field operators \(a_1\) and \(a_2\). If a density matrix is given the expectation values are calculated, otherwise a matrix with operators is returned.
- Parameters:
- a1Qobj
Field operator for mode 1.
- a2Qobj
Field operator for mode 2.
- rhoQobj, optional
Density matrix for which to calculate the covariance matrix.
- gfloat, default: sqrt(2)
Scaling factor for
a = 0.5 * g * (x + iy)
, defaultg = sqrt(2)
. The value ofg
is related to the value ofhbar
in the commutation relation[x, y] = i * hbar
viahbar=2/g ** 2
giving the default valuehbar=1
.
- Returns:
- corr_matndarray
Array of complex numbers or Qobj’s A 2-dimensional array of covariance values for the field quadratures, or, if rho=0, a matrix of operators.
- covariance_matrix(basis, rho, symmetrized=True)[source]
Given a basis set of operators \(\{a\}_n\), calculate the covariance matrix:
\[V_{mn} = \frac{1}{2}\langle a_m a_n + a_n a_m \rangle - \langle a_m \rangle \langle a_n\rangle\]or, if of the optional argument symmetrized=False,
\[V_{mn} = \langle a_m a_n\rangle - \langle a_m \rangle \langle a_n\rangle\]- Parameters:
- basislist
List of operators that defines the basis for the covariance matrix.
- rhoQobj
Density matrix for which to calculate the covariance matrix.
- symmetrizedbool, default: True
Flag indicating whether the symmetrized (default) or non-symmetrized correlation matrix is to be calculated.
- Returns:
- corr_matndarray
A 2-dimensional array of covariance values.
- logarithmic_negativity(V, g=1.4142135623730951)[source]
Calculates the logarithmic negativity given a symmetrized covariance matrix, see
qutip.continuous_variables.covariance_matrix
. Note that the two-mode field state that is described by V must be Gaussian for this function to applicable.- Parameters:
- Vndarray
The covariance matrix.
- gfloat, default: sqrt(2)
Scaling factor for
a = 0.5 * g * (x + iy)
, defaultg = sqrt(2)
. The value ofg
is related to the value ofhbar
in the commutation relation[x, y] = i * hbar
viahbar=2/g ** 2
giving the default valuehbar=1
.
- Returns:
- Nfloat
The logarithmic negativity for the two-mode Gaussian state that is described by the the Wigner covariance matrix V.
- wigner_covariance_matrix(
- a1=None,
- a2=None,
- R=None,
- rho=None,
- g=1.4142135623730951,
Calculates the Wigner covariance matrix \(V_{ij} = \frac{1}{2}(R_{ij} + R_{ji})\), given the quadrature correlation matrix \(R_{ij} = \langle R_{i} R_{j}\rangle - \langle R_{i}\rangle \langle R_{j}\rangle\), where \(R = (q_1, p_1, q_2, p_2)^T\) is the vector with quadrature operators for the two modes.
Alternatively, if
R = None
, and if annihilation operatorsa1
anda2
for the two modes are supplied instead, the quadrature correlation matrix is constructed from the annihilation operators before then the covariance matrix is calculated.- Parameters:
- a1Qobj, optional
Field operator for mode 1.
- a2Qobj, optional
Field operator for mode 2.
- Rndarray, optional
The quadrature correlation matrix.
- rhoQobj, optional
Density matrix for which to calculate the covariance matrix.
- gfloat, default: sqrt(2)
Scaling factor for
a = 0.5 * g * (x + iy)
, defaultg = sqrt(2)
. The value ofg
is related to the value ofhbar
in the commutation relation[x, y] = i * hbar
viahbar=2/g ** 2
giving the default valuehbar=1
.
- Returns:
- cov_matndarray
A 2-dimensional array of covariance values.