Source code for qutip.distributions

"""
This module provides classes and functions for working with spatial
distributions, such as Wigner distributions, etc.

.. note::

    Experimental.

"""

__all__ = ['Distribution', 'HarmonicOscillatorWaveFunction',
           'HarmonicOscillatorProbabilityFunction']

import numpy as np
from numpy.typing import ArrayLike
from numpy import pi, exp, sqrt

from scipy.special import hermite, factorial

from . import isket, ket2dm, state_number_index, Qobj
from .wigner import wigner, qfunc
from ._distributions import psi_n_single_fock_multiple_position_complex

try:
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    from matplotlib.figure import Figure
    from matplotlib.axes import Axes
    from matplotlib.colors import Colormap
    from mpl_toolkits.mplot3d import Axes3D
except:
    # Type when matplotlib is not installed
    from typing import Any
    Figure = Any
    Axes = Any
    Colormap = Any


[docs] class Distribution: """A class for representation spatial distribution functions. The Distribution class can be used to prepresent spatial distribution functions of arbitray dimension (although only 1D and 2D distributions are used so far). It is indented as a base class for specific distribution function, and provide implementation of basic functions that are shared among all Distribution functions, such as visualization, calculating marginal distributions, etc. Parameters ---------- data : array_like Data for the distribution. The dimensions must match the lengths of the coordinate arrays in xvecs. xvecs : list List of arrays that spans the space for each coordinate. xlabels : list List of labels for each coordinate. """ def __init__(self, data: ArrayLike = None, xvecs: list = [], xlabels: list = []): self.data = data self.xvecs = xvecs self.xlabels = xlabels
[docs] def visualize(self, fig: Figure = None, ax: Axes = None, figsize: tuple = (8, 6), colorbar: bool = True, cmap: Colormap = None, style: str = "colormap", show_xlabel: bool = True, show_ylabel: bool = True) -> tuple[Figure, Axes]: """ Visualize the data of the distribution in 1D or 2D, depending on the dimensionality of the underlaying distribution. Parameters: fig : matplotlib Figure instance If given, use this figure instance for the visualization, ax : matplotlib Axes instance If given, render the visualization using this axis instance. figsize : tuple Size of the new Figure instance, if one needs to be created. colorbar: Bool Whether or not the colorbar (in 2D visualization) should be used. cmap: matplotlib colormap instance If given, use this colormap for 2D visualizations. style : string Type of visualization: 'colormap' (default) or 'surface'. show_xlabel : bool Whether or not the xlabel is shown. show_ylabel : bool Whether or not the ylabel is shown. Returns ------- fig, ax : tuple A tuple of matplotlib figure and axes instances. """ n = len(self.xvecs) if n == 2: if style == "colormap": return self._visualize_2d_colormap(fig=fig, ax=ax, figsize=figsize, colorbar=colorbar, cmap=cmap, show_xlabel=show_xlabel, show_ylabel=show_ylabel) else: return self._visualize_2d_surface(fig=fig, ax=ax, figsize=figsize, colorbar=colorbar, cmap=cmap, show_xlabel=show_xlabel, show_ylabel=show_ylabel) elif n == 1: return self._visualize_1d(fig=fig, ax=ax, figsize=figsize, show_xlabel=show_xlabel, show_ylabel=show_ylabel) else: raise NotImplementedError("Distribution visualization in " + "%d dimensions is not implemented." % n)
def _visualize_2d_colormap(self, fig=None, ax=None, figsize=(8, 6), colorbar=True, cmap=None, show_xlabel=True, show_ylabel=True): if not fig and not ax: fig, ax = plt.subplots(1, 1, figsize=figsize) if cmap is None: cmap = mpl.colormaps['RdBu'] lim = abs(self.data.real).max() cf = ax.contourf(self.xvecs[0], self.xvecs[1], self.data.real, 100, norm=mpl.colors.Normalize(-lim, lim), cmap=cmap) if show_xlabel: ax.set_xlabel(self.xlabels[0], fontsize=12) if show_ylabel: ax.set_ylabel(self.xlabels[1], fontsize=12) if colorbar: cb = fig.colorbar(cf, ax=ax) return fig, ax def _visualize_2d_surface(self, fig=None, ax=None, figsize=(8, 6), colorbar=True, cmap=None, show_xlabel=True, show_ylabel=True): if not fig and not ax: fig = plt.figure(figsize=figsize) ax = Axes3D(fig, azim=-62, elev=25) if cmap is None: cmap = mpl.colormaps['RdBu'] lim = abs(self.data.real).max() X, Y = np.meshgrid(self.xvecs[0], self.xvecs[1]) s = ax.plot_surface(X, Y, self.data.real, norm=mpl.colors.Normalize(-lim, lim), rstride=5, cstride=5, cmap=cmap, lw=0.1) if show_xlabel: ax.set_xlabel(self.xlabels[0], fontsize=12) if show_ylabel: ax.set_ylabel(self.xlabels[1], fontsize=12) if colorbar: cb = fig.colorbar(s, ax=ax, shrink=0.5) return fig, ax def _visualize_1d(self, fig=None, ax=None, figsize=(8, 6), show_xlabel=True, show_ylabel=True): if not fig and not ax: fig, ax = plt.subplots(1, 1, figsize=figsize) p = ax.plot(self.xvecs[0], self.data.real) if show_xlabel: ax.set_xlabel(self.xlabels[0], fontsize=12) if show_ylabel: ax.set_ylabel("Marginal distribution", fontsize=12) return fig, ax
[docs] def marginal(self, dim=0): """ Calculate the marginal distribution function along the dimension `dim`. Return a new Distribution instance describing this reduced- dimensionality distribution. Parameters ---------- dim : int The dimension (coordinate index) along which to obtain the marginal distribution. Returns ------- d : Distributions A new instances of Distribution that describes the marginal distribution. """ return Distribution(data=self.data.mean(axis=dim), xvecs=[self.xvecs[dim]], xlabels=[self.xlabels[dim]])
[docs] def project(self, dim=0): """ Calculate the projection (max value) distribution function along the dimension `dim`. Return a new Distribution instance describing this reduced-dimensionality distribution. Parameters ---------- dim : int The dimension (coordinate index) along which to obtain the projected distribution. Returns ------- d : Distributions A new instances of Distribution that describes the projection. """ return Distribution(data=self.data.max(axis=dim), xvecs=[self.xvecs[dim]], xlabels=[self.xlabels[dim]])
class TwoModeQuadratureCorrelation(Distribution): """A class for representing the probability distribution for quadrature measurement outcomes given a two-mode wavefunction or density matrix. Parameters ---------- state : Qobj, default : None A quantum state (wavefunction or density matrix) from which the distribution is generated. theta1 : float, default : 0.0 Angle for the first coordinate. theta2 : float, default : 0.0 Angle for the second coordinate. extent : ArrayLike, default : [[-5, 5], [-5, 5]] List of arrays with the bounds [a, b] for each coordinate. steps : int, default : 250 The number of data points generated between the bounds for each coordinate. """ def __init__(self, state: Qobj = None, theta1: float = 0.0, theta2: float = 0.0, extent: ArrayLike = [[-5, 5], [-5, 5]], steps: int = 250): self.xvecs = [np.linspace(extent[0][0], extent[0][1], steps), np.linspace(extent[1][0], extent[1][1], steps)] self.xlabels = [r'$X_1(\theta_1)$', r'$X_2(\theta_2)$'] self.theta1 = theta1 self.theta2 = theta2 if state: self.update(state) def update(self, state: Qobj): """Calculates the probability distribution for quadrature measurement outcomes. Parameters ---------- state : Qobj A quantum state (wavefunction or density matrix) from which the distribution is generated. """ if isket(state): self.update_psi(state) else: self.update_rho(state) def update_psi(self, psi: Qobj): """Calculates the probability distribution for quadrature measurement outcomes given a two-mode wavefunction. Parameters ---------- state : Qobj A wavefunction from which the distribution is generated. """ X1, X2 = np.meshgrid(self.xvecs[0], self.xvecs[1]) p = np.zeros((len(self.xvecs[0]), len(self.xvecs[1])), dtype=complex) N = psi.dims[0][0] for n1 in range(N): kn1 = exp(-1j * self.theta1 * n1) / \ sqrt(sqrt(pi) * 2 ** n1 * factorial(n1)) * \ exp(-X1 ** 2 / 2.0) * np.polyval(hermite(n1), X1) for n2 in range(N): kn2 = exp(-1j * self.theta2 * n2) / \ sqrt(sqrt(pi) * 2 ** n2 * factorial(n2)) * \ exp(-X2 ** 2 / 2.0) * np.polyval(hermite(n2), X2) i = state_number_index([N, N], [n1, n2]) p += kn1 * kn2 * psi.full()[i, 0] self.data = abs(p) ** 2 def update_rho(self, rho: Qobj): """Calculates the probability distribution for quadrature measurement outcomes given a two-mode density matrix. Parameters ---------- state : Qobj A density matrix from which the distribution is generated. """ X1, X2 = np.meshgrid(self.xvecs[0], self.xvecs[1]) p = np.zeros((len(self.xvecs[0]), len(self.xvecs[1])), dtype=complex) N = rho.dims[0][0] M1 = np.zeros( (N, N, len(self.xvecs[0]), len(self.xvecs[1])), dtype=complex) M2 = np.zeros( (N, N, len(self.xvecs[0]), len(self.xvecs[1])), dtype=complex) for m in range(N): for n in range(N): M1[m, n] = exp(-1j * self.theta1 * (m - n)) / \ sqrt(pi * 2 ** (m + n) * factorial(n) * factorial(m)) * \ exp(-X1 ** 2) * np.polyval( hermite(m), X1) * np.polyval(hermite(n), X1) M2[m, n] = exp(-1j * self.theta2 * (m - n)) / \ sqrt(pi * 2 ** (m + n) * factorial(n) * factorial(m)) * \ exp(-X2 ** 2) * np.polyval( hermite(m), X2) * np.polyval(hermite(n), X2) for n1 in range(N): for n2 in range(N): i = state_number_index([N, N], [n1, n2]) for p1 in range(N): for p2 in range(N): j = state_number_index([N, N], [p1, p2]) p += M1[n1, p1] * M2[n2, p2] * rho.full()[i, j] self.data = p
[docs] class HarmonicOscillatorWaveFunction(Distribution): """Calculates and represents the wave function of a quantum harmonic oscillator. The `HarmonicOscillatorWaveFunction` class computes the spatial distribution of the wave function for a quantum harmonic oscillator given a set of state coefficients (`psi`). By extending the `Distribution` base class, this class provides specialized attributes and methods tailored for modeling the harmonic oscillator's wave function.This implementation leverages the Cython function `psi_n_single_fock_multiple_position_complex`from the `_distributions.pyx` module to efficiently compute the wave function's contribution for each Fock state across spatial coordinates using an optimized recurrence relation. Parameters ---------- psi : array_like, optional Coefficients for each harmonic oscillator state (Fock state) to calculate the wave function. Defaults to None, in which case the wave function is not initialized until `update` is called. omega : float, optional The angular frequency of the harmonic oscillator. Defaults to 1.0. extent : list, optional A list with two elements that defines the range of the spatial dimension for calculating the wave function. Defaults to [-5, 5]. steps : int, optional Number of points used to discretize the spatial range defined by `extent`. Higher values increase resolution but may slow down computations. Defaults to 250. Attributes ---------- xvecs : list of arrays A list containing arrays that represent the spatial coordinates over which the wave function is calculated. xlabels : list of str A list of labels for each spatial coordinate, in this case with one element representing the x-axis. omega : float The angular frequency of the harmonic oscillator, stored as an attribute for use in wave function calculations. data : np.ndarray of complex numbers The calculated wave function values across the spatial range. Populated when `update` is called. Methods ------- update(psi) Calculates and updates the wave function values for the harmonic oscillator based on the provided state coefficients, `psi`. References ---------- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1), 015402. doi:10.1088/1361-6404/aa9584 - *Fast-Wave*: High-performance wave function calculations for quantum harmonic oscillators.Available at: https://github.com/fobos123deimos/fast-wave """ def __init__(self, psi: ArrayLike = None, omega: float = 1.0, extent: list = [-5, 5], steps: int = 250): self.xvecs = [np.linspace(extent[0], extent[1], steps)] self.xlabels = [r'$x$'] self.omega = omega if psi: self.update(psi)
[docs] def update(self, psi: Qobj): """Calculate the wavefunction for the given state of an harmonic oscillator. Parameters ---------- psi : Qobj A quantum state from which the distribution is generated. """ self.data = np.zeros(len(self.xvecs[0]), dtype=complex) N = psi.shape[0] for n in range(N): self.data += ( psi_n_single_fock_multiple_position_complex( n, self.xvecs[0].astype(complex) ) * psi[n, 0] ) self.data *= pow(self.omega, 0.25)
[docs] class HarmonicOscillatorProbabilityFunction(Distribution): """A class for representing the probability distribution of a quantum harmonic oscillator given a density matrix. Parameters ---------- rho : qobj, default : None Density matrix for composite quantum systems. omega : float, default : 1.0 The angular frequency of the harmonic oscillator. extent : list, default : [[-5, 5], [-5, 5]] List of arrays with the bounds [a, b] for each coordinate. steps : int, default : 250 The number of data points generated between the bounds for each coordinate. """ def __init__(self, rho: Qobj = None, omega: float = 1.0, extent: list = [-5, 5], steps: int = 250): self.xvecs = [np.linspace(extent[0], extent[1], steps)] self.xlabels = [r'$x$'] self.omega = omega if rho: self.update(rho)
[docs] def update(self, rho: Qobj): """Calculates the probability function for the given state of an harmonic oscillator (as density matrix). Parameters ---------- state : Qobj A density matrix from which the distribution is generated. """ if isket(rho): rho = ket2dm(rho) self.data = np.zeros(len(self.xvecs[0]), dtype=complex) M, N = rho.shape for m in range(M): k_m = pow(self.omega / pi, 0.25) / \ sqrt(2 ** m * factorial(m)) * \ exp(-self.xvecs[0] ** 2 / 2.0) * \ np.polyval(hermite(m), self.xvecs[0]) for n in range(N): k_n = pow(self.omega / pi, 0.25) / \ sqrt(2 ** n * factorial(n)) * \ exp(-self.xvecs[0] ** 2 / 2.0) * \ np.polyval(hermite(n), self.xvecs[0]) self.data += np.conjugate(k_n) * k_m * rho.full()[m, n]