Source code for qutip.tomography

__all__ = ['qpt_plot', 'qpt_plot_combined', 'qpt']

from numpy import hstack, real, imag
import scipy.linalg as la
from . import tensor, spre, spost, stack_columns, unstack_columns
from .visualization import matrix_histogram
import itertools

try:
    import matplotlib.pyplot as plt
except:
    pass


def _index_permutations(size_list):
    """
    Generate a list with all index permutations.

    Parameters
    ----------
    size_list : list
        A list that contains the sizes for each composite system.

    Returns
    -------
    perm_idx : list
        List containing index permutations.

    """
    return itertools.product(*[range(N) for N in size_list])


[docs]def qpt_plot(chi, lbls_list, title=None, fig=None, axes=None): """ Visualize the quantum process tomography chi matrix. Plot the real and imaginary parts separately. Parameters ---------- chi : array Input QPT chi matrix. lbls_list : list List of labels for QPT plot axes. title : str, optional Plot title. fig : figure instance, optional User defined figure instance used for generating QPT plot. axes : list of figure axis instance, optional User defined figure axis instance (list of two axes) used for generating QPT plot. Returns ------- fig, ax : tuple A tuple of the matplotlib figure and axes instances used to produce the figure. """ if axes is None or len(axes) != 2: if fig is None: fig = plt.figure(figsize=(16, 8)) ax1 = fig.add_subplot(1, 2, 1, projection='3d', position=[0, 0, 1, 1]) ax2 = fig.add_subplot(1, 2, 2, projection='3d', position=[0, 0, 1, 1]) axes = [ax1, ax2] xlabels = [] for inds in _index_permutations([len(lbls) for lbls in lbls_list]): xlabels.append("".join([lbls_list[k][inds[k]] for k in range(len(lbls_list))])) matrix_histogram(real(chi), xlabels, xlabels, limits=[-1, 1], ax=axes[0]) axes[0].set_title(r"real($\chi$)") matrix_histogram(imag(chi), xlabels, xlabels, limits=[-1, 1], ax=axes[1]) axes[1].set_title(r"imag($\chi$)") if title and fig: fig.suptitle(title) return fig, axes
[docs]def qpt_plot_combined(chi, lbls_list, title=None, fig=None, ax=None, figsize=(8, 6), threshold=None): """ Visualize the quantum process tomography chi matrix. Plot bars with height and color corresponding to the absolute value and phase, respectively. Parameters ---------- chi : array Input QPT chi matrix. lbls_list : list List of labels for QPT plot axes. title : str, optional Plot title. fig : figure instance, optional User defined figure instance used for generating QPT plot. figsize : (int, int), default: (8, 6) Size of the figure when the ``fig`` is not provided. ax : figure axis instance, optional User defined figure axis instance used for generating QPT plot (alternative to the fig argument). threshold: float, optional Threshold for when bars of smaller height should be transparent. If not set, all bars are colored according to the color map. Returns ------- fig, ax : tuple A tuple of the matplotlib figure and axes instances used to produce the figure. """ if ax is None: if fig is None: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(1, 1, 1, projection='3d', position=[0, 0, 1, 1]) xlabels = [] for inds in _index_permutations([len(lbls) for lbls in lbls_list]): xlabels.append("".join( [lbls_list[k][inds[k]] for k in range(len(lbls_list))])) if not title: title = r"$\chi$" matrix_histogram(chi, xlabels, xlabels, bar_style='abs', color_style='phase', options={'threshold': threshold}, ax=ax) ax.set_title(title) return fig, ax
[docs]def qpt(U, op_basis_list): """ Calculate the quantum process tomography chi matrix for a given (possibly nonunitary) transformation matrix U, which transforms a density matrix in vector form according to: vec(rho) = U * vec(rho0) or rho = unstack_columns(U * stack_columns(rho0)) U can be calculated for an open quantum system using the QuTiP propagator function. Parameters ---------- U : Qobj Transformation operator. Can be calculated using QuTiP propagator function. op_basis_list : list A list of Qobj's representing the basis states. Returns ------- chi : array QPT chi matrix """ E_ops = [] # loop over all index permutations for inds in _index_permutations([len(ops) for ops in op_basis_list]): # loop over all composite systems E_op_list = [op_basis_list[k][inds[k]] for k in range(len( op_basis_list))] E_ops.append(tensor(E_op_list)) EE_ops = [spre(E1) * spost(E2.dag()) for E1 in E_ops for E2 in E_ops] M = hstack([EE.full().ravel('F')[:, None] for EE in EE_ops]) Uvec = U.full().ravel('F') chi_vec = la.solve(M, Uvec) return chi_vec.reshape(U.shape).T