Source code for qutip.solver.result

""" Class for solve function results"""

# Required for Sphinx to follow autodoc_type_aliases
from __future__ import annotations

from typing import TypedDict, Any, Callable
from ..core.numpy_backend import np
from numpy.typing import ArrayLike
from ..core import Qobj, QobjEvo, expect

__all__ = ["Result"]


class _QobjExpectEop:
    """
    Pickable e_ops callable that calculates the expectation value for a given
    operator.

    Parameters
    ----------
    op : :obj:`.Qobj`
        The expectation value operator.
    """

    def __init__(self, op):
        self.op = op

    def __call__(self, t, state):
        return expect(self.op, state)


class ExpectOp:
    """
    A result e_op (expectation operation).

    Parameters
    ----------
    op : object
        The original object used to define the e_op operation, e.g. a
        :~obj:`Qobj` or a function ``f(t, state)``.

    f : function
        A callable ``f(t, state)`` that will return the value of the e_op
        for the specified state and time.

    append : function
        A callable ``append(value)``, e.g. ``expect[k].append``, that will
        store the result of the e_ops function ``f(t, state)``.

    Attributes
    ----------
    op : object
        The original object used to define the e_op operation.
    """

    def __init__(self, op, f, append):
        self.op = op
        self._f = f
        self._append = append

    def __call__(self, t, state):
        """
        Return the expectation value for the given time, ``t`` and
        state, ``state``.
        """
        return self._f(t, state)

    def _store(self, t, state):
        """
        Store the result of the e_op function. Should only be called by
        :class:`~Result`.
        """
        self._append(self._f(t, state))


class _BaseResult:
    """
    Common method for all ``Result``.
    """

    def __init__(self, options, *, solver=None, stats=None):
        self.solver = solver
        if stats is None:
            stats = {}
        self.stats = stats

        self._state_processors = []
        self._state_processors_require_copy = False

        # make sure not to store a reference to the solver
        options_copy = options.copy()
        if hasattr(options_copy, "_feedback"):
            options_copy._feedback = None
        self.options = options_copy

    def _e_ops_to_dict(self, e_ops):
        """Convert the supplied e_ops to a dictionary of Eop instances."""
        if e_ops is None:
            e_ops = {}
        elif isinstance(e_ops, (list, tuple)):
            e_ops = {k: e_op for k, e_op in enumerate(e_ops)}
        elif isinstance(e_ops, dict):
            pass
        else:
            e_ops = {0: e_ops}
        return e_ops

    def add_processor(self, f, requires_copy=False):
        """
        Append a processor ``f`` to the list of state processors.

        Parameters
        ----------
        f : function, ``f(t, state)``
            A function to be called each time a state is added to this
            result object. The state is the state passed to ``.add``, after
            applying the pre-processors, if any.

        requires_copy : bool, default False
            Whether this processor requires a copy of the state rather than
            a reference. A processor must never modify the supplied state, but
            if a processor stores the state it should set ``require_copy`` to
            true.
        """
        self._state_processors.append(f)
        self._state_processors_require_copy |= requires_copy


class ResultOptions(TypedDict):
    store_states: bool | None
    store_final_state: bool


[docs] class Result(_BaseResult): """ Base class for storing solver results. Parameters ---------- e_ops : :obj:`.Qobj`, :obj:`.QobjEvo`, function or list or dict of these The ``e_ops`` parameter defines the set of values to record at each time step ``t``. If an element is a :obj:`.Qobj` or :obj:`.QobjEvo` the value recorded is the expectation value of that operator given the state at ``t``. If the element is a function, ``f``, the value recorded is ``f(t, state)``. The values are recorded in the ``e_data`` and ``expect`` attributes of this result object. ``e_data`` is a dictionary and ``expect`` is a list, where each item contains the values of the corresponding ``e_op``. options : dict The options for this result class. solver : str or None The name of the solver generating these results. stats : dict or None The stats generated by the solver while producing these results. Note that the solver may update the stats directly while producing results. kw : dict Additional parameters specific to a result sub-class. Attributes ---------- times : list A list of the times at which the expectation values and states were recorded. states : list of :obj:`.Qobj` The state at each time ``t`` (if the recording of the state was requested). final_state : :obj:`.Qobj`: The final state (if the recording of the final state was requested). expect : list of arrays of expectation values A list containing the values of each ``e_op``. The list is in the same order in which the ``e_ops`` were supplied and empty if no ``e_ops`` were given. Each element is itself a list and contains the values of the corresponding ``e_op``, with one value for each time in ``.times``. The same lists of values may be accessed via the ``.e_data`` dictionary and the original ``e_ops`` are available via the ``.e_ops`` attribute. e_data : dict A dictionary containing the values of each ``e_op``. If the ``e_ops`` were supplied as a dictionary, the keys are the same as in that dictionary. Otherwise the keys are the index of the ``e_op`` in the ``.expect`` list. The lists of expectation values returned are the *same* lists as those returned by ``.expect``. e_ops : dict A dictionary containing the supplied e_ops as ``ExpectOp`` instances. The keys of the dictionary are the same as for ``.e_data``. Each value is object where ``.e_ops[k](t, state)`` calculates the value of ``e_op`` ``k`` at time ``t`` and the given ``state``, and ``.e_ops[k].op`` is the original object supplied to create the ``e_op``. solver : str or None The name of the solver generating these results. stats : dict or None The stats generated by the solver while producing these results. options : dict The options for this result class. """ times: list[float] states: list[Qobj] options: ResultOptions e_data: dict[Any, list[Any]] def __init__( self, e_ops: dict[Any, Qobj | QobjEvo | Callable[[float, Qobj], Any]], options: ResultOptions, *, solver: str = None, stats: dict[str, Any] = None, **kw, ): super().__init__(options, solver=solver, stats=stats) raw_ops = self._e_ops_to_dict(e_ops) self.e_data = {k: [] for k in raw_ops} self.e_ops = {} for k, op in raw_ops.items(): f = self._e_op_func(op) self.e_ops[k] = ExpectOp(op, f, self.e_data[k].append) self.add_processor(self.e_ops[k]._store) self.times = [] self.states = [] self._final_state = None self._post_init(**kw) def _e_op_func(self, e_op): """ Convert an e_op entry into a function, ``f(t, state)`` that returns the appropriate value (usually an expectation value). Sub-classes may override this function to calculate expectation values in different ways. """ if isinstance(e_op, Qobj): return _QobjExpectEop(e_op) elif isinstance(e_op, QobjEvo): return e_op.expect elif callable(e_op): return e_op raise TypeError(f"{e_op!r} has unsupported type {type(e_op)!r}.") def _post_init(self): """ Perform post __init__ initialisation. In particular, add state processors or pre-processors. Sub-class may override this. If the sub-class wishes to register the default processors for storing states, it should call this parent ``.post_init()`` method. Sub-class ``.post_init()`` implementation may take additional keyword arguments if required. """ store_states = self.options["store_states"] store_states = store_states or ( len(self.e_ops) == 0 and store_states is None ) if store_states: self.add_processor(self._store_state, requires_copy=True) store_final_state = self.options["store_final_state"] if store_final_state and not store_states: self.add_processor(self._store_final_state, requires_copy=True) def _store_state(self, t, state): """Processor that stores a state in ``.states``.""" self.states.append(state) def _store_final_state(self, t, state): """Processor that writes the state to ``._final_state``.""" self._final_state = state def _pre_copy(self, state): """Return a copy of the state. Sub-classes may override this to copy a state in different manner or to skip making a copy altogether if a copy is not necessary. """ return state.copy() def add(self, t, state): """ Add a state to the results for the time ``t`` of the evolution. Adding a state calculates the expectation value of the state for each of the supplied ``e_ops`` and stores the result in ``.expect``. The state is recorded in ``.states`` and ``.final_state`` if specified by the supplied result options. Parameters ---------- t : float The time of the added state. state : typically a :obj:`.Qobj` The state a time ``t``. Usually this is a :obj:`.Qobj` with suitable dimensions, but it sub-classes of result might support other forms of the state. Notes ----- The expectation values, i.e. ``e_ops``, and states are recorded by the state processors (see ``.add_processor``). Additional processors may be added by sub-classes. """ self.times.append(t) if self._state_processors_require_copy: state = self._pre_copy(state) for op in self._state_processors: op(t, state) def __repr__(self): lines = [ f"<{self.__class__.__name__}", f" Solver: {self.solver}", ] if self.stats: lines.append(" Solver stats:") lines.extend(f" {k}: {v!r}" for k, v in self.stats.items()) if self.times: lines.append( f" Time interval: [{self.times[0]}, {self.times[-1]}]" f" ({len(self.times)} steps)" ) lines.append(f" Number of e_ops: {len(self.e_ops)}") if self.states: lines.append(" States saved.") elif self.final_state is not None: lines.append(" Final state saved.") else: lines.append(" State not saved.") lines.append(">") return "\n".join(lines) @property def expect(self) -> list[ArrayLike]: return [np.array(e_op) for e_op in self.e_data.values()] @property def final_state(self) -> Qobj: if self._final_state is not None: return self._final_state if self.states: return self.states[-1] return None